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Abstract

Quantitative analysis of dynamic processes in living cells by means of fluorescence microscopy imaging requires tracking
of hundreds of bright spots in noisy image sequences. Deterministic approaches, which use object detection prior to tracking,
perform poorly in the case of noisy image data. We propose an improved, completely automatic tracker, built within a Bayesian
probabilistic framework. It better exploits spatiotemporal information andprior knowledge than common approaches, yielding
more robust tracking also in cases of photobleaching and object interaction. The tracking method was evaluated using simulated
but realistic image sequences, for which ground truth was available. Theresults of these experiments show that the method is
more accurate and robust than popular tracking methods. In addition, validation experiments were conducted with real fluorescence
microscopy image data acquired for microtubule growth analysis. Thesedemonstrate that the method yields results that are in
good agreement with manual tracking performed by expert cell biologists. Our findings suggest that the method may replace
laborious manual procedures.

Index Terms

Bayesian estimation, particle filtering, sequential Monte Carlo, multiple objecttracking, microtubule dynamics, fluorescence
microscopy, molecular bioimaging.

I. I NTRODUCTION

In the past decade, advances in molecular cell biology have triggered the development of highly sophisticated live cell
fluorescence microscopy systems capable of in vivo multidimensional imaging of subcellular dynamic processes. Analysis of
time-lapse image data has redefined the understanding of many biological processes, which in the past had been studied using
fixed material. Motion analysis of nanoscale objects such asproteins or vesicles, or subcellular structures such as microtubules
(Fig. 1), commonly tagged with green fluorescent protein (GFP), requires tracking of large and time-varying numbers of spots in
noisy image sequences [1]–[7]. Nowadays, high-throughputexperiments generate vast amounts of dynamic image data, which
cannot be analyzed manually with sufficient speed, accuracyand reproducibility. Consequently, many biologically relevant
questions are either left unaddressed, or answered with great uncertainty. Hence, the development of automated tracking
methods which replace tedious manual procedures and eliminate the bias and variability in human judgments, is of great
importance.

Conventional approaches to tracking in molecular cell biology typically consist of two subsequent steps. In the first step,
objects of interest are detected separately in each image frame and their positions are estimated based on, for instance,
intensity thresholding [8], multiscale analysis using thewavelet transform [9], or model fitting [4]. The second step solves
the correspondence problem between sets of estimated positions. This is usually done in a frame-by-frame fashion, based on
nearest-neighbor or smooth-motion criteria [10], [11]. Such approaches are applicable to image data showing limited numbers of
clearly distinguishable spots against relatively uniformbackgrounds, but fail to yield reliable results in the case of poor imaging
conditions [12], [13]. Tracking methods based on optic flow [14], [15] are not suitable because the underlying assumption
of brightness preservation over time is not satisfied in fluorescence microscopy, due to photobleaching. Methods based on
spatiotemporal segmentation by minimal cost path searching have also been proposed [16], [17]. Until present, however, these
have been demonstrated to work well only for the tracking of asingle object [16], or a very limited number of well-separated
objects [17]. As has been observed [17], such methods fail when either the number of objects is larger than a few dozen, or
when the object trajectories cross each other, which make them unsuitable for our applications.

As a consequence of the limited performance of existing approaches, tracking is still performed manually in many laboratories
worldwide. It has been argued [1] that in order to reach similar superior performance as expert human observers in temporal
data association, while at the same time achieving a higher level of sensitivity and accuracy, it is necessary to make better use
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Fig. 1. Examples of microtubules tagged with GFP-labeled plusend tracking proteins (bright spots), imaged using fluorescence confocal microscopy. The
images are single frames from six 2D time-lapse studies, conducted with different experimental and imaging conditions. The quality of such images typically
ranges from SNR≈ 5–6 (a-c) to the extremely low SNR≈ 2–3 (d-f).

of temporal information and (application specific) prior knowledge about the morphodynamics of the objects being studied. The
human visual system integrates to a high degree spatial, temporal and prior information [18] to resolve ambiguous situations in
estimating motion flows in image sequences. Here we explore the power of a Bayesian generalization of the standard Kalman
filtering approach in emulating this process. It addresses the problem of estimating the hidden state of a dynamic systemby
constructing the posterior probability density function (pdf) of the state based on all available information, including prior
knowledge and the (noisy) measurements. Since this pdf embodies all available statistical information, it can be termed a
complete solution to the estimation problem.

Bayesian filtering is a conceptual approach, which yields analytical solutions, in closed form, only in the case of linear
systems and Gaussian statistics. In the case of non-linearity and non-Gaussian statistics, numerical solutions can beobtained
by applying sequential Monte Carlo (SMC) methods [19], in particular particle filtering (PF) [20]. In the filtering process,
tracking is performed by using a predefined model of the expected dynamics to predict the object states, and by using the
(noisy) measurements (possibly from different types of sensors) to obtain the posterior probability of these states. In the case
of multiple target tracking, the main task is to perform efficient measurement-to-target association, on the basis of thresholded
measurements [21]. The classical data association methodsin multiple target tracking can be divided into two main classes:
unique-neighbor data association methods, as in the multiple hypothesis tracker (MHT), which associate each measurement with
one of the previously established tracks, and all-neighbors data association methods, such as joint probabilistic data association
(JPDA), which use all measurements for updating all track estimates [21]. The tracking performance of these methods is known
to be limited by the linearity of the data models. By contrast, SMC methods that propagate the posterior pdf, or methods that
propagate the first-order statistical moment (the probability hypothesis density) of the multitarget pdf [22], have been shown
to be successful in solving the multiple target tracking anddata association problems when the data models are nonlinear and
non-Gaussian [23], [24].
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Previous applications of PF-based motion estimation include radar- and sonar-based tracking [24], [25], mobile robot
localization [19], [26], teleconferencing or video surveillance [27], and other human motion applications [28]–[30]. In most
computer vision applications, tracking is limited to a few objects only [31], [32]. Most biological applications, on the other
hand, require the tracking of large and time-varying numbers of objects. Recently, the use of PF in combination with level-
sets [33] and active contours [34] has been reported for biological cell tracking. These methods outperform deterministic
methods, but they are straightforward applications of the original algorithm [31] for single target tracking, and cannot be
directly applied to the simultaneous tracking of many intracellular objects. A PF-like method for the tracking of proteins has
also been suggested [35], but it still uses template matching for the linking stage, it requires manual initialization,and tracks
only a single object. In this paper, we extend our earlier conference reports [36], [37], and develop a fully automated PF-based
method for robust and accurate tracking of multiple nanoscale objects in two-dimensional (2D) and three-dimensional (3D)
dynamic fluorescence microscopy images. Its performance isdemonstrated for a particular biological application of interest:
microtubule growth analysis.

The paper is organized as follows. In Section II we give more in-depth information on the biological application considered
in this paper, providing further biological motivation forour work. In Section III we present the general tracking framework and
its extension to allow tracking of multiple objects. Next, in Section IV, we describe the necessary improvements and adaptations
to tailor the framework to the application. These include a new dynamic model which allows dealing with object interaction
and photobleaching effects. In addition, we improve the robustness and reproducibility of the algorithm by introducing a new
importance function for data-dependent sampling (the choice of the importance density is one of the most critical issues in
the design of a PF method). We also propose a new, completely automatic track initiation procedure. In Section V, we present
experimental results of applying our PF method to syntheticimage sequences, for which ground truth was available, as well
as to real fluorescence microscopy image data of microtubulegrowth. A concluding discussion of the main findings and their
potential implications is given in Section VI.

II. M ICROTUBULE GROWTH ANALYSIS

Microtubules (MTs) are polarized tubular filaments (diameter ≈ 25 nm) composed ofα/β-tubulin heterodimers. In most
cell types, one end of a MT (the minus-end) is embedded in the so-called MT organizing center (MTOC), while the other
end (the plus-end) is exposed to the cytoplasm. MT polymerization involves the addition ofα/β-tubulin subunits to the plus
end. During MT disassembly, these subunits are lost. MTs frequently switch between growth and shrinkage, a feature called
dynamic instability [38]. The conversion of growth to shrinkage is called catastrophe, while the switch from shrinkageto growth
is called rescue. The dynamic behavior of MTs is described byMT growth and shrinkage rates, and catastrophe and rescue
frequencies. MTs are fairly rigid structures having nearlyconstant velocity while growing or shrinking [39]. MT dynamics is
highly regulated, as a properly organized MT network is essential for many cellular processes, including mitosis, cellpolarity,
transport of vesicles, and the migration and differentiation of cells. For example, when cells enter mitosis, the cdc2 kinase
controls MT dynamics such that the steady-state length of MTs decreases considerably. This is important for spindle formation
and positioning [40]. It has been shown that an increase in catastrophe frequency is largely responsible for this changein MT
length [41].

Plus-end-tracking proteins, or +TIPs [42], specifically bind to MT plus-ends and have been linked to MT-target interactions
and MT dynamics [43]–[45]. Plus-end-tracking was first described for overexpressed GFP-CLIP170 in cultured mammalian
cells [46]. In time-lapse movies, typical fluorescent “comet-like” dashes were observed, which represented GFP-CLIP170 bound
to the ends of growing MTs. As plus-end tracking is intimately associated with MT growth, fluorescently labeled +TIPs are
now widely used to measure MT growth rates in living cells, and they are also the objects of interest considered in the present
work. With fluorescent +TIPs, all growing MTs can be discerned. Alternatively, the advantage of using fluorescent tubulin is
that all parameters of MT dynamics can be measured. However,in regions where the MT network is dense, the fluorescent MT
network obscures MT ends, making it very difficult to examineMT dynamics. Hence, in many studies based on fluorescent
tubulin [47]–[49], analysis is restricted to areas within the cells where the MT network is sparse. Ideally, one should use both
methods to acquire all possible knowledge regarding MT dynamics, and this will be addressed in future work.

+TIPs are well positioned to perform their regulatory tasks. A network of interacting proteins, including +TIPs, may govern
the changes in MT dynamics that occur during the cell cycle [50] . Since +TIPs are so important and display such a fascinating
behavior, the mechanisms by which +TIPs recognize MT ends have attracted much attention. In one view, +TIPs binds to
newly synthesized MT ends with high affinity and detach seconds later from the MT lattice, either in a regulated manner
or stochastically [46]. However, other mechanisms have also been proposed [44], [45], [51]. Measuring the distribution and
displacement of a fluorescent +TIP in time may shed light on the mechanism of MT end binding. However, this is a labor
intensive procedure if fluorescent tracks have to be delineated by hand, and very likely leads to user bias and loss of important
information. By developing a reliable tracking algorithm we obtain information on the behavior of all growing MTs within a
cell, which reveals the spatiotemporal distribution and regulation of growing MTs. Importantly, this information canbe linked
to the spatiotemporal fluorescent distribution of +TIPs. This is extremely important, since the localization of +TIPs reports on
the dynamic state of MTs and the cell.
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III. T RACKING FRAMEWORK

Before describing the details of our tracking approach, we first recap the basic principles of nonlinear Bayesian tracking in
general (III-A), and PF in particular (III-B), as well as theextension that has been proposed in the literature to allow tracking
of multiple objects within this framework (III-C).

A. Nonlinear Bayesian Tracking

The Bayesian tracking approach deals with the problem of inferring knowledge about the unobserved state of a dynamic
system, which changes over time, using a sequence of noisy measurements. In a state-space approach to dynamic state
estimation, the state vectorxt of a system contains all relevant information required to describe the system under investigation.
Bayesian estimation in this case is used to recursively estimate a time evolving posterior distribution (or filtering distribution)
p(xt|z1:t), which describes the object statext given all observationsz1:t up to timet.

The exact solution to this problem can be constructed by specifying the Markovian probabilistic model of the state evolution,
D(xt|xt−1), and the likelihoodL(zt|xt), which relates the noisy measurements to any state. The required probability density
function p(xt|z1:t) may be obtained, recursively, in two stages: prediction andupdate. It is assumed that the initial pdf,
p(x0|z0) ≡ p(x0), also known as the prior, is available (z1:0 = z0 being the set of no measurements).

The prediction stage involves using the system model and pdfp(xt−1|z1:t−1) to obtain the prior pdf of the state at timet
via the Chapman-Kolmogorov equation:

p(xt|z1:t−1) =

∫

D(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (1)

In the update stage, when a measurementzt becomes available, Bayes’ rule is used to modify the prior density and obtain the
required posterior density of the current state:

p(xt|z1:t) ∝ L(zt|xt)p(xt|z1:t−1). (2)

This recursive estimation of the filtering distribution canbe processed sequentially rather than as a batch, so that it is not
necessary to store the complete data set nor to reprocess existing data if a new measurement becomes available [20]. The
filtering distribution embodies all available statisticalinformation and an optimal estimate of the state can theoretically be
found with respect to any sensible criterion.

B. Particle Filtering Methods

The optimal Bayesian solution, defined by the recurrence relations (1) and (2), is analytically tractable in a restrictive set
of cases, including the Kalman filter, which provides an optimal solution in case of linear dynamic systems with Gaussian
noise, and grid based filters [20]. For most practical modelsof interest, SMC methods (also known as bootstrap filtering,
particle filtering, and the condensation algorithm [31]) are used as an efficient numerical approximation. The basic idea here
is to represent the required posterior density functionp(xt|z1:t) with a set ofNs random samples, or particles, and associated
weights{x(i)

t , w
(i)
t }Ns

i=1. Thus, the filtering distribution can be approximated as

p(xt|z1:t) ≈
Ns
∑

i=1

w
(i)
t δ(xt − x

(i)
t ),

whereδ(·) is the Dirac delta function and the weights are normalized such that
∑Ns

i=1 w
(i)
t = 1. These samples and weights

are then propagated through time to give an approximation ofthe filtering distribution at subsequent time steps.
The weights in this representation are chosen using a sequential version of importance sampling (SIS) [52]. It applies when

auxiliary knowledge is available in the form of an importance functionq(xt|xt−1, zt) describing which areas of the state-space
contain most information about the posterior. The idea is then to sample the particles in those areas of the state-space where
the importance function is large and to avoid as much as possible generating samples with low weights, since they providea
negligible contribution to the posterior. Thus, we would like to generate a set of new particles from an appropriately selected
proposal function, i.e.,

x
(i)
t ∼ q(xt|x

(i)
t−1, zt), i = {1, . . . , Ns}. (3)

A detailed formulation ofq(·|·) is given in Section IV-F.
With the set of state particles obtained from (3), the importance weightsw(i)

t may be recursively updated as follows:

w
(i)
t ∝

L(zt|x
(i)
t )D(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1, zt)

w
(i)
t−1. (4)
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Generally, any importance function can be chosen, subject to some weak constraints [53], [54]. The only requirements are the
possibility to easily draw samples from it and evaluate the likelihood and dynamic models. For very large numbers of samples,
this MC characterization becomes equivalent to the usual functional description of the posterior pdf.

By using this representation, statistical inferences, such as expectation, maximum a posteriori (MAP), and minimum mean
square error (MMSE) estimators (the latter is used for the object position estimation in the approach proposed in this paper),
can easily be approximated. For example,

x̂MMSE
t = Ep[xt] =

∫

xtp(xt|z1:t)dxt ≈
Ns
∑

i=1

x
(i)
t w

(i)
t . (5)

A common problem with the SIS particle filter is the degeneracy phenomenon, where after a few iterations, all but a few
particles will have negligible weight. The variance of the importance weights can only increase (stochastically) overtime [53].
The effect of the degeneracy can be reduced by a good choice ofimportance density and the use of resampling [20], [52],
[53] to eliminate particles that have small weights and concentrate on particles with large weights (see [53] for more details
on degeneracy and resampling procedures).

C. Multi-Modality and Mixture Tracking

It is straightforward to generalize the Bayesian formulation to the problem of multi-object tracking. However, due to the
increase in dimensionality, this formulation gives an exponential explosion of computational demands. The primary goal in a
multi-object tracking application is to determine the posterior distribution, which is multi-modal in this case, overthe current
joint configuration of the objects at the current time step, given all observations up to that time step. Multiple modes are caused
either by ambiguity about the object state due to insufficient measurements, which is supposed to be resolved during tracking,
or by measurements coming from multiple objects being tracked. Generally, MC methods are poor at consistently maintaining
the multi-modality in the filtering distribution. In practice it frequently occurs that all the particles quickly migrate to one of
the modes, subsequently discarding other modes.

To capture and maintain the multi-modal nature, which is inherent to many applications in which tracking of multiple objects
is required, the filtering distribution is explicitly represented by anM -component mixture model [55]:

p(xt|z1:t) =
M
∑

m=1

πm,tpm(xt|z1:t), (6)

with
∑M

m=1 πm,t = 1 and a non-parametric model is assumed for the individual mixture components. In this case, the particle
representation of the filtering distribution,{x(i)

t , w
(i)
t }N

i=1 with N = MNs particles, is augmented with a set of component
indicators,{c(i)t }N

i=1, with c
(i)
t = m if particle i belongs to mixture componentm. For the mixture componentm we also

use the equivalent notation{x(l)
m,t, w

(l)
m,t}

Ns

l=1 = {x
(i)
t , w

(i)
t : c

(i)
t = m}N

i=1. The representation (6) can be updated in the same
fashion as the two-step approach for standard Bayesian sequential estimation [55].

IV. TAILORING THE FRAMEWORK

Having presented the general framework for PF-based multiple object tracking, we now tailor it to our application: the study of
MT dynamics. This requires making choices regarding the models involved as well as a number of computational and practical
issues. Specifically, we propose a new dynamic model, which does not only cover spatiotemporal behavior but also allows
dealing with photobleaching effects (IV-A) and object interaction (IV-B). In addition, we propose a new observation model and
corresponding likelihood function (IV-C), tailored to objects that are elongated in their direction of motion. The robustness and
computational efficiency of the algorithm are improved by using two-step hierarchical searching (IV-D), measurement gating
(IV-E) and a new importance function for data-dependent sampling (IV-F). Finally, we propose practical procedures forparticle
reclustering (IV-G) and automatic track initiation (IV-H).

A. State-Space and Dynamic Model

In order to model the dynamic behavior of the visible ends of MTs in our algorithm, we represent the object state with
the state vectorxt = (xt, ẋt, yt, ẏt, zt, żt, σmax,t, σmin,t, σz,t, It)

T , where(σmax,t, σmin,t, σz,t)
T , st is the object shape feature

vector (see IV-C),(xt, yt, zt)
T , rt is the radius vector,̇rt , vt is velocity, andIt object intensity. The state evolution model

D(xt|xt−1) can be factorized as

D(xt|xt−1) = Dy(yt|yt−1)Ds(st|st−1)DI(It|It−1), (7)
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whereyt = (xt, ẋt, yt, ẏt, zt, żt). Here,Dy(yt|yt−1) is modeled using a linear Gaussian model [53], which can easily be
evaluated pointwise in (4), and is given by

Dy(yt|yt−1) ∝

exp

(

−
1

2
(yt − Fyt−1)

T Q−1(yt − Fyt−1)

)

, (8)

with the process transition matrixF = diag[F1,F1,F1] and covariance matrixQ = diag[Q1,Q1,Q1] given by

F1 =

(

1 T
0 1

)

and Q1 =

(

q11 q12
q12 q22

)

,

whereT is the sampling interval. Depending on the parametersq11, q12, q22 the model (8) describes a variety of motion
patterns, ranging from random walk (‖vt‖ = 0, q11 6= 0, q12 = 0, q22 = 0) to nearly constant velocity (‖vt‖ 6= 0, q11 6= 0,
q12 6= 0, q22 6= 0) [56], [57]. In our application, the parameters are fixed toq11 = q1

3 T
3, q12 = q1

2 T
2, q22 = q1T , whereq1

controls the noise level. In this case, model (8) corresponds to the continuous-time modelṙ(t) = w(t) ≈ 0, wherew(t) is white
noise that corresponds to noisy accelerations [56]. We alsomake the realistic assumption that object velocities are bounded.
This prior information is object dependent and will be used for state initialization (see IV-H). Small changes in frame-to-frame
MT appearance (shape) are modeled using the Gaussian transition prior Ds(st|st−1) = N (st|st−1, T q2I), whereN (·|µ, Σ)
indicates the normal distribution with meanµ and covariance matrixΣ, I is the identity matrix, andq2 represents the noise
level in object appearance.

In practice, the analysis of time-lapse fluorescence microscopy images is complicated by photobleaching, a dynamic process
by which the fluorescent proteins undergo photoinduced chemical destruction upon exposure to excitation light and thuslose
their ability to fluoresce. Although the mechanisms of photobleaching are not yet well understood, two commonly used (and
practically similar) approximations of fluorescence intensity over time are given by

I(t) = Ae−at +B (9)

and
I(t) = I0

(

1 +

(

t

L

)k
)−1

, (10)

whereA, B, a, I0, L, and k are experimentally determined constants (see [58], [59] for more details on the validity and
sensitivity of these models). The rate of photobleaching isa function of the excitation intensity. With a laser as an excitation
source, photobleaching is observed on the time scale of microseconds to seconds. The high numerical aperture objectives
currently in use, which maximize spatial resolution and improve the limits of detection, further accelerate the photobleaching
process. Commonly, photobleaching is ignored by standard tracking methods, but in many practical cases it is necessaryto
model this process so as to be less sensitive to changing experimental conditions.

Following the common approximation (9), we model object intensity in our image data by the sum of a time-dependent, a
time-independent, and a random component:

It + Ic + ut =
I0Â

Â+ B̂
e−α̂t +

I0B̂

Â+ B̂
+ ut, (11)

whereut is zero-mean Gaussian process noise andI0 is the initial object intensity, obtained by the initialization procedure
(see IV-H). The parameterŝA, B̂, and α̂ are estimated using the Levenberg-Marquardt algorithm fornonlinear fitting of (9)
to the average background intensity over time,bt (see IV-C). In order to conveniently incorporate the photobleaching effect
contained in (11) into our framework, we approximate it as a first-order Gauss-Markov process,It = (1− α̂)It−1 + ut, which
models the exponential intensity decay in the discrete-time domain. In this case, the corresponding state priorDI(It|It−1) =
N (It|(1 − α̂)It−1, q3T ), whereq3 = T−1σ2

u andσ2
u is the variance ofut.

The photobleaching effect could alternatively be accommodated in our framework by assuming a constant intensity model
(α̂ = 0) for DI(It|It−1), but with a very high variance for the process noise,σ2

u. However, in practice, because of the limited
number of MC samples, the variance of the estimation would rapidly grow, and many samples would be used inefficiently,
causing problems especially in the case of a highly peaked likelihoodL(zt|xt) (see IV-C). By using (11), we follow at least
the trend of the intensity changes, and bring the estimationcloser to the optimal solution. This way, we reduce the estimation
variance and, consequently, the number of MC samples neededfor the same accuracy as in the case of the constant intensity
model.

In summary, the proposed model (7) correctly approximates small accelerations in object motion and fluctuations in object
intensity, and therefore is very suitable for tracking growing MTs, as their dynamics can be well modeled by constant velocity
plus small random diffusion [39]. The model (8) can also be successfully used for tracking other subcellular structures, for
example vesicles, which are characterized by motion with higher nonlinearity. In that case, the process noise level, defined by
Q, should be increased.
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B. Object Interactions and Markov Random Field

In order to obtain a more realistic motion model and avoid track coalescence in the case of multiple object tracking, we
explicitly model the interaction between objects using a Markov random field (MRF) [60]. Here we use a pairwise MRF,
expressed by means of a Gibbs distribution

ψt(x
(i)
t ,x

(j)
t ) ∝ exp (−di,j

t ),

i, j ∈ {1, . . . , N}, c
(i)
t 6= c

(j)
t , (12)

wheredi,j
t is a penalty function which penalizes the states of two objects c(i)t andc(j)t that are closely spaced at timet. That

is, di,j
t is maximal when two objects coincide and gradually falls offas they move apart. This simple pairwise representation

is easy to implement yet can be made quite sophisticated. Using this form, we can still retain the predictive motion modelof
each individual target. To this end, we sampleNs times the pairs(x(l)

m,t−1,x
(l)
m,t) (M such pairs at a time,m = {1, . . . ,M}),

from pm(xt−1|z1:t−1) and q(xt|x
(l)
m,t−1, zt), respectively,l = {1, . . . , Ns}. Taking into account (12), the weights (4) in this

case are given by

w
(l)
m,t ∝

L(zt|x
(l)
m,t)D(x

(l)
m,t|x

(l)
m,t−1)

q(x
(l)
m,t|x

(l)
m,t−1, zt)

M
∏

k=1,k 6=m

ψt(x
(l)
m,t,x

(l)
k,t). (13)

The mixture representation{{x(l)
m,t, w

(l)
m,t}

M
m=1}

Ns

l=1 is then straightforwardly transformed to{x(i)
t , w

(i)
t , c

(i)
t }N

i=1. In our appli-
cation we have found that an interaction potential based only on object positions is sufficient to avoid most tracking failures.
The use of a MRF approach is especially relevant and efficientin the case of 3D+t data analysis, because object merging is
not possible in our application.

C. Observation Model and Likelihood

The measurements in our application are represented by a sequence of 2D or 3D images showing the motion of fluorescent
proteins. The individual images (also called frames) are recorded at discrete instantst, with a sampling intervalT , with each
image consisting ofNx ×Ny ×Nz pixels (Nz = 1 in 2D). At each pixel(i, j, k), which corresponds to a rectangular volume
of dimensions∆x × ∆y × ∆z nm3, the measured intensity is denoted aszt(i, j, k). The complete measurement recorded at
time t is anNx ×Ny ×Nz matrix denoted aszt = {zt(i, j, k) : i = 0, . . . , Nx −1, j = 0, . . . , Ny −1, k = 0, . . . , Nz −1}. For
simplicity we assume that the origins and axis orientationsof the (x, y, z) reference system and the(i, j, k) system coincide.
Let z̃t(r) denote a first-order interpolation ofzt(∆xi,∆yj,∆zk).

The image formation process in a microscope can be modeled asa convolution of the true light distribution coming from
the specimen, with a point-spread function (PSF), which is the output of the optical system for an input point light source.
The theoretical diffraction-limited PSF in the case of paraxial and non-paraxial imaging can be expressed by the scalarDebye
diffraction integral [61]. In practice, however, a 3D Gaussian approximation of the PSF [4] is commonly favored over the
more complicated PSF models (such as the Gibson-Lanni model[62]). This choice is mainly motivated by computational
considerations, but a Gaussian approximation of the physical PSF is fairly accurate for reasonably large pinhole sizes(relative
squared error (RSE)< 9%) and nearly perfect for typical pinhole sizes (RSE< 1%) [61]. In most microscopes currently used,
the PSF limits the spatial resolution to≈ 200 nm in-plane and≈ 600 nm in the direction of the optical axis, as a consequence
of which subcellular structures (typically of size< 20 nm) are imaged as blurred spots. We adopt the common assumption
that all blurring processes are due to a linear and spatiallyinvariant PSF.

The PF framework accommodates any PSF that can be calculatedpointwise. To model the imaged intensity profile of the
object with some shape, one would have to use the convolutionwith the PSF for every statex(i)

t . In order to overcome this
computational overload, we propose to model the PSF and object shape at the same time using the 3D Gaussian approximation.
To model the manifest elongation in the intensity profile of MTs, we utilize the velocity components from the state vectorxt

as parameters in the PSF. In this case, for an object of intensity It at positionrt, the intensity contribution to pixel(i, j, k) is
approximated as

ht(i, j, k;xt) = bt + (It + Ic)×

exp

(

−
1

2
mT RT Σ−1Rm

)

×

exp

(

−
(k∆z − zt‖m‖ tan θ)2

2σ2
z

)

, (14)

wherebt is the background intensity,σz (≈ 235 nm) models the axial blurring,R = R(φ) is a rotation matrix

R(φ) =

(

cosφ sinφ
− sinφ cosφ

)

, Σ =

(

σ2
m(θ) 0
0 σ2

min

)

,
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m =

(

i∆x − xt

j∆y − yt

)

, σm(θ) = σmin − (σmin − σmax) cos θ,

tan θ =
żt

√

ẋt
2 + ẏt

2
, tanφ =

ẏt

ẋt

, −π < φ, θ ≤ π.

The parametersσmax and σmin represent the amount of blurring and, at the same time, modelthe elongation of the object
along the direction of motion. For subresolution structures such as vesicles,σmin = σmax ≈ 80 nm, and for the elongated MTs
σmin ≈ 100 nm andσmax ≈ 300 nm.

For background level estimation we use the fact that the contribution of object intensity values to the total image intensity
(mainly formed by background structures with lower intensity) is negligible, especially in the case of low SNRs. We havefound
that in a typical 2D image of size103 × 103 pixels containing a thousand objects, the number of object pixels is only about
1%. Even if the object intensities would be 10 times as large as the background level (very high SNR), their contribution to
the total image intensity would be less than10%. In that case, the normalized histogram of the imagezt can be approximated
by a Gaussian distribution with mean̂b and varianceσ2

b . The estimated backgroundbt = b̂ is then calculated according to

bt =
1

NxNyNz

Nx−1
∑

i=0

Ny−1
∑

j=0

Nz−1
∑

k=0

zt(i, j, k). (15)

In the case of a skewed histogram of image intensity, the median of the distribution can be taken as an estimate of the
background level. The latter is preferable because it treats object pixels as outliers for the background distribution.

Since an object will affect only the pixels in the vicinity ofits location,rt, we define the likelihood function as

LG(zt|xt) ,
∏

(i,j,k)∈C(xt)

ph(zt(i, j, k)|xt)

pb(zt(i, j, k)|bt)
, (16)

whereC(xt) = {(i, j, k) ∈ Z
3 : ht(i, j, k;xt) − bt > 0.1It},

ph(zt(i, j, k)|xt) ∝

1

σh(i, j, k)
exp

(

−
(zt(i, j, k) − ht(i, j, k;xt))

2

2σ2
h(i, j, k)

)

, (17)

and
pb(zt(i, j, k)|bt) ∝ exp

(

−
(zt(i, j, k) − bt)

2

2σ2
b

)

, (18)

with σ2
h(i, j, k) andσ2

b the variances of the measurement noise for the object+background and background, respectively, which
are assumed to be independent from pixel to pixel and from frame to frame. Poisson noise, which can be used to model the
effect of the quantum nature of light on the measured data, isone of the main sources of noise in fluorescence microscopy
imaging. The recursive Bayesian solution is applicable as long as the statistics of the measurement noise is known for each
pixel. In this paper we use a valid approximation of Poisson noise, withσ2

h(i, j, k) = ht(i, j, k;xt) andσ2
b = bt, by scaling

the image intensities in order to satisfy the conditionσ2
b = bt [13].

D. Hierarchical Searching

Generally, the likelihoodLG(zt|xt) is very peaked (even when the regionC(xt) is small) and may lead to severe sample
impoverishment and divergence of the filter. Theoreticallyit is impossible to avoid the degeneracy phenomenon, where,after a
few iterations of the algorithm, all but one of the normalized importance weights are very close to zero [53]. Consequently, the
accuracy of the estimator also degrades enormously [52]. A commonly used measure of degeneracy is theestimated effective
sample size[53], given by

Neff(t) =

(

Ns
∑

i=1

(w
(i)
t )2

)−1

, (19)

which intuitively corresponds to the number of “useful” particles. Degeneracy is usually strong for image data with lowSNR,
but the filter also performs poorly when the noise level is toosmall [19]. This suggests that MC estimation with accurate sensors
may perform worse than with inaccurate sensors. The problemcan be partially fixed by using an observation model which
overestimates the measurement noise. While the performanceis better, this is not a principled way of fixing the problem; the
observation model is artificially inaccurate and the resulting estimation is no longer a posterior, even if infinitely many samples
were used. Other methods that try to improve the performanceof PF include partitioned sampling [32], the auxiliary particle
filter (APF) [20], [54] and the regularized particle filters (RPF) [19], [54]. Because of the highly nonlinear observation model
and dynamic model with a high noise level, the mentioned methods are inefficient for our application. Partitioned sampling
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requires the possibility to partition the state space and todecouple the observation model for each of the partitions, which
cannot be done for our application. Application of the APF isbeneficial only when the dynamic model is correctly specified
with a small amount of process noise. The tracking of highly dynamic structures with linear models requires increasing the
process noise in order to capture the typical motion patterns.

To overcome these problems, we use a different approach, based on RPF, and mainly on progressive correction [19]. First,
we propose a second observation model:

LS(zt|xt) ,
σB

σS(xt)
×

exp

(

(

Sz
t (xt) − Sb

t (xt)
)2

2σ2
B

−

(

Sz
t (xt) − Sh

t (xt)
)2

2σ2
S(xt)

)

, (20)

where
Sz

t (xt) =
∑

(i,j,k)∈C(xt)

zt(i, j, k),

and
Sh

t (xt) =
∑

(i,j,k)∈C(xt)

ht(i, j, k;xt),

Sb
t = bt|C(xt)|, where| · | denotes the set size operator, and the variancesσ2

S andσ2
B are taken to approximate the Poisson

distribution: σ2
S = So

t and σ2
B = Sb

t . The likelihoodLS(zt|xt) is less peaked but gives an error of the same order as
LG(zt|xt). Another advantage is thatLS(zt|xt) can be used for objects without a predefined shape; only the region C(xt),
which presumably contains the object, and the total object intensity inC(xt) need to be specified.

Subsequently, we propose a modified hierarchical search strategy, which uses both models,LS andLG. To this end, we
calculate an intermediate state at timet′, between time pointst− 1 and t, by propagating and updating the samples using the
likelihood LS according to

p̄(xt′ |z1:t′) ∝ LS(zt′ |xt′)D(xt′ |xt−1)p(xt−1|z1:t−1) (21)

wherezt′ = zt. After this step,Neff is still rather high, because the likelihoodLS is less peaked thanLG. In a next step,
particles with high weights at timet′ are diversified and put into regions where the likelihoodLG is high, giving a much better
approximation of the posterior:

p(xt|z1:t) ∝ LG(zt|xt)N (xt|µt′ ,Σt′)p̄(xt′ |z1:t′), (22)

where the expectation and the variance are given by

µt′ = Ep̄[xt′ ], Σt′ = Ep̄[(xt′ − µt′)(xt′ − µt′)
T ]. (23)

The described hierarchical search strategy is further denoted asLSG. It keeps the numberNeff quite large and, in practice,
provides filters that are more stable in time, with lower variance in the position estimation.

E. Measurement Gating

Multiple object tracking requires gating, or measurement selection. The purpose of gating is to reduce computational expense
by eliminating measurements which are far from the predicted measurement location. Gating is performed for each track at
each time stept by defining a subvolume of the image space, called the gate. All measurements positioned within the gate
are selected and used for the track update step, (2), while measurements outside the gate are ignored in these computations.
In standard approaches to tracking, using the Kalman filter or extended Kalman filter, measurement gating is accomplished by
using the predicted measurement covariance for each objectand then updating the predicted state using joint probabilistic data
association [63]. In the PF approach, which is able to cope with nonlinear and non-Gaussian models, the analog of the predicted
measurement covariance is not available and can be constructed only by taking, for example, a Gaussian approximation of
the current particle cloud and using it to perform gating. Generally, this approximation is unsatisfactory, since the advantages
gained from having a representation of a non-Gaussian pdf are lost. In the proposed framework, however, this approximation
is justified by using the highly peaked likelihood functionsand the reclustering procedure (described in IV-G), which keep the
mixture components unimodal.

Having the measurements̃zt(rt), we define the gate for each of the tracks as follows:

Cm,t = {rt ∈ R
3 : (rt − r̄m,t)

T Σ−1
m,t(rt − r̄m,t) ≤ C0}, (24)

where the parameterC0 specifies the size of the gate, which is proportional to the probability that the object falls within the
gate. Generally, since the volume of the gate is dependent onthe tracking accuracy, it varies from scan to scan and from track
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to track. In our experiments,C0 = 9 (a 3-standard-deviation level gate). The gateCm,t is centered at the position predicted
from the particle representation ofpm(xt|z1:t−1):

r̄m,t = Epm
[rt] =

∫

rtpm(xt|z1:t−1)dxt

≈
N
∑

i=1,c
(i)
t−1=m

r̄
(i)
t w

(i)
t−1, (25)

where thēr(i)
t are the position elements of the state vector

x̄
(i)
t ∼ D(xt|x

(i)
t−1), i = {1, . . . , N}.

Similarly, the covariance matrix is calculated as

Σm,t = Epm
[(rt − r̄m,t)(rt − r̄m,t)

T ]. (26)

F. Data-Dependent Sampling

Basic particle filters [20], [31], [36], which use the proposal distribution q(xt|xt−1, zt) = D(xt|xt−1) usually perform
poorly because too few samples are generated in regions where the desired posteriorp(xt|z1:t) is large. In order to construct
a proposal distribution which alleviates this problem and takes into account the most recent measurementszt, we propose to
transform the image sequence into probability distributions. True spots are characterized by a combination of convex intensity
distributions and a relatively high intensity. Noise-induced local maxima typically exhibit a random distribution ofintensity
changes in all directions, leading to a low local curvature [4]. These two discriminative features (intensity and curvature) are
used to construct an approximation of the likelihoodL(zt|xt), using the image data available at timet. For each object we
use the transformation

p̃m(rt|zt) =
(Gσ ∗ z̃t(rt) − bt)

rκs
t (rt)

∫

Cm,t
(Gσ ∗ z̃t(rt) − bt)rκs

t (rt)dxdydz
, (27)

∀rt ∈ Cm,t, whereGσ is the Gaussian kernel with standard deviation (scale)σ, the curvatureκt(rt) is given by the determinant
of the Hessian matrixH of the intensityz̃t(rt):

κt(rt) = det(H(rt)), H(rt) = ∇ · ∇T z̃t(rt), (28)

and the exponentsr > 0 ands > 0 weigh each of the features and determine the peakedness of the likelihood.
Using this transformation, we define the new data dependent proposal distribution for objectm as

q̃m(xt|xt−1, zt) = p̃m(rt|zt)N (It|z̃t(rt) − bt, q3T )×

N (st|s
MMSE
m,t−1, T q2I)N (vt|rt − r̂MMSE

m,t−1, T q1I), (29)

Contrary to the original proposal distribution, which fails if the likelihood is too peaked, the distribution (29) generates samples
that are highly consistent with the most recent measurements in the predicted (using the information from the previous time
step) gates. A combination of both proposal distributions gives excellent results:

qm(xt|xt−1, zt) = γD(xt|xt−1) + (1 − γ)q̃m(xt|xt−1, zt),

where0 < γ < 1. Comparison shows that the proposal distributionqm(xt|xt−1, zt) is uniformly superior to the regular one
(γ = 1) and scales much better to smaller sample sizes.

G. Clustering and Track Management

The representation of the filtering distributionp(xt|z1:t) as the mixture model (6) allows for a deterministic spatial reclustering
procedure({c′(i)t },M ′) = F ({x

(i)
t }, {c

(i)
t },M) [55]. The functionF can be implemented in any convenient way. It calculates

a new mixture representation (with possibly a different number of mixture components) taking as input the current mixture
representation. This allows modeling and capturing merging and splitting events, which also have a direct analogy withbiological
phenomena. In our implementation, at each iteration the mixture representation is recalculated by applyingK-means clustering
algorithm. The reclustering is based on spatial information (object positions) only and is initialized with the estimates (25).

Taking into account our application, two objects are not allowed to merge when their states become similar. Whenever
objects pass close to one another, the object with the best likelihood score typically “hijacks” the particles of the nearby
mixture components. As mentioned above, this problem is partly solved by using the MRF model for object interactions. The
MRF model significantly improves the tracking performance in 3D+t. For 2D+t data sets, however, the observed motion is a
projection of the real 3D motion onto the 2D plane. In this case, when one object passes above or beneath another (in 3D), we
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perceive the motion as penetration or merging. These situations are in principle ambiguous and frequently cannot be resolved
uniquely, neither by an automatic tracking method nor by a human observer.

We detect possible object intersections during tracking bychecking whether the gatesCm,t intersect each other. For example,
for two trajectories, the intersection is captured ifCi,t ∩ Cj,t 6= {0}, i, j ∈ {1, . . . ,M}. In general, the measurement space
Ct = ∪M

m=1Cm,t is partitioned into a set of disjoint regionsCt = {C∗
1,t, . . . , C

∗
K,t}, whereC∗

k,t is either the union of connected
gates or the gate itself. For eachC∗

k,t, we define a set of indicesJk,t, which indicate which of the gatesCi,t belong to it:

Jk,t = {i ∈ {1, . . . ,M} : Ci,t ∈ C∗
k,t} (30)

For the gatesC∗
k,t with |Jk,t| = 1, the update of the MC weightsw(i)

m,t is done according to (4). For all other gatesC∗
k,t,

which correspond to object interaction, we follow the procedure similar to the one described in Section IV-B. For eachC∗
k,t for

which |Jk,t| 6= 1, the set of states{x(l)
j,t}, j ∈ Jk,t, is sampled from the proposal distribution (for everyl = {1, . . . , Ns}), and

a set of hypothesesΘ(l)
k,t = {θ

(l)
1 , . . . , θ

(l)
S }, S = 2|Jk,t|, is formed. Eachθ(l)i is a set of binary associations,{a(l)

i,j}, j ∈ Jk,t,

wherea(l)
i,j = 1 if object j exists during the interaction, anda(l)

i,j = 0 if the object “dies” or leaves just before or during the
interaction and gives no measurements at timet. The hypothesis that maximizes the likelihood is selected as

θ̂
(l)
k = argmax

θ
(l)
i

∈Θ
(l)
k,t

L(zt|xt), (31)

where the likelihoodL(zt|xt) can be eitherLG(zt|xt) orLS(zt|xt), but the regionC(xt) is defined asC(xt) = ∪j∈Jk,t
C(x

(l)
j,t),

andht(.;xt) is substituted in (16) and (20) for eachθ(l)i with
∑

j∈Jk,t
a
(l)
i,jht(.;x

(l)
j,t). For the update of the MC weightsw(l)

j,t

the regionC(xt) = C(x
(l)
j,t) andht(.;xt) =

∑

j∈Jk,t
â
(l)
j ht(.;x

(l)
j,t) are used in (16) and (20), with thêa(l)

j denoting thea(l)
i,j

corresponding tôθ(l)k . Additionally, in such cases, we do not perform reclustering, but keep the labels for the current iteration
as they were before. If the component representation in the next few frames after the interaction event becomes too diffuse,
and there is more than one significant mode, splitting is performed and a new track is initiated (see IV-H for more details).

Finally, for the termination of an existing track, the methods commonly used for small target tracking [23], [24] cannot
be applied straightforwardly. These methods assume that, due to imperfect sensors, the probability of detecting an object is
less than one, and they try to follow the object after disappearance for 4-5 frames, predicting its position in time and hoping
to catch it again. In our case, when the density of objects in the images is high, such monitoring would definitely result in
“confirming” measurements after 3-5 frames of prediction, but these measurements would very likely originate from another
object. In our algorithm in order to terminate the track we define the thresholds̄σmax, σ̄min, σ̄z that describe the “biggest”
objects that we are going to track. Then we sample the particles in the predicted gatesCm,t using the data-dependent sampling
(27) with s = 0. If the determinant of the covariance matrix computed for those MC samples is grater than̄σ2

maxσ̄
2
minσ̄

2
zr

−3

the track is terminated. If the gateCm,t does not contain a real object the determinant value will be much higher than the
proposed threshold, which is nicely separate the objects from the background structures.

H. Initialization and Track Initiation

The prior distributionp(x0) is specified based on information available in the first frame. One way to initialize the state
vectorx0 would be to point on the desired bright spots in the image or toselect regions of interest. In the latter case, the state
vector is initialized by a uniform distribution over the state space, in predefined intervals for velocity and intensity, and the
expected number of objects should be specified. During filtering and reclustering, after a burn-off period of 2-3 frames,only
the true objects will remain.

For completely automatic initiation of object tracks in thefirst frame, and also for the detection of potential objects for
tracking in subsequent frames, we use the following procedure. First, the image space is divided intoNI = NX ×NY ×NZ

rectangular 3D cells of dimensions∆c ×∆c ×∆a, with ∆c = 6σmax and∆a = 6σz. Next, for each time stept, the image is
converted to a probability map according to (27), andN = MNs particlesx̃(i)

t are sampled with equal weights. The number
of particles in each cell represents the degree of belief in object birth. To discriminate potential objects from background
structures or noise, we estimate for each cell the center of massr̂k (k = {1, . . . , NI}) by MC integration over that cell and
calculate the number of MC samplesnk,t in the ellipsoidal regionsSk,t(rt) centered at̂rk (with semi-axes of lengths∆c/2,
∆c/2, ∆a/2). In order to initiate a new object, two conditions have to besatisfied. The first condition is thatnk,t should
be greater thanN |Sk,t|

|zt|
= Nπ(6NI)

−1. The threshold represents the expected number of particlesif the sampling was done
from the image region with uniform background intensity. The second condition is similar to the one for track termination
(see IV-G): the determinant of the covariance matrix shouldbe smaller than̄σ2

maxσ̄
2
minσ̄

2
zr

−3.
Each objectd (out of Md newly detected at timet) is initialized with mixture weightπd,t = (M + Md)

−1 and object
positionrd,t (the center of mass calculated by MC integration over the region Sd,t(rt)). The velocity is uniformly distributed
in a predefined range and the intensity is obtained from the image data for that frame and position. In cases where the samples
from an undetected object are split between four cells (in the unlikely event when the object is positioned exactly on the
intersection of the cell borders), the object will most probably be detected in the next time frame.
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Fig. 2. Examples of synthetic images used in the experiments. The left image is a single frame from one of the sequences, at SNR=2, giving an impression
of object appearance. The insets show zooms of objects at different SNRs. The right image is a frame from another sequence, atSNR=7, with the trajectories
of the 20 moving objects superimposed (white dots), illustrating the motion patterns allowed by the linear state evolutionmodel (8).

V. EXPERIMENTAL RESULTS

The performance of the described PF-based tracking method was evaluated using both computer generated image data
(Section V-A) and real fluorescence microscopy image data from MT dynamics studies (Section V-B). The former allowed us
to test the accuracy and robustness to noise and object interaction of our algorithm compared to two other commonly used
tracking tools. The experiments on real data enabled us to compare our algorithm to expert human observers.

A. Evaluation on Synthetic Data

1) Simulation Setup:The algorithm was evaluated using synthetic but realistic 2D image sequences (20 time frames of
512 × 512 pixels, ∆x = ∆y = 50 nm, T = 1 sec) of moving MT-like objects (a fixed number of 10, 20, or 40 objects per
sequence, yielding data sets of different object densities), generated according to (8) and (14), for different levelsof Poisson
noise (see Fig. 2) in the range SNR=2–7, since SNR=4 has been identified by previous studies [12], [13] as a critical level at
which several popular tracking methods break down. In addition, the algorithm was tested using 3D synthetic image sequences
(20 time frames of512×512 pixels×20 optical slices,∆x = ∆y = 50 nm, ∆z = 200 nm,T = 1 sec, with 10–40 objects per
sequence), also for different noise levels in the range of SNR=2–7. Here, SNR is defined as the difference in intensity between
the object and the background, divided by the standard deviation of the object noise [12]. The velocities of the objects ranged
from 200 to 700 nm/sec, representative of published data [64].

Having the ground truth for the synthetic data, we evaluatedthe accuracy of tracking by using a traditional quantitative
performance measure: the root mean square error (RMSE), inK independent runs (we usedK = 3) [24]:

RMSE=

√

√

√

√

1

K

K
∑

i=1

RMSE2
k, (32)

with

RMSE2
k =

1

M

M
∑

m=1

{

1

|Tm|

∑

t∈Tm

‖rm,t − r̂k
m,t‖

2

}

, (33)

whererm,t defines the true position of objectm at time t, r̂k
m,t is a posterior mean estimate ofrm,t for the kth run, andTm

is the set of time points at which objectm exists.
2) Experiments with Hierarchical Searching:In order to show the advantage of using the proposed hierarchical search

strategy (see IV-D), we calculated the localization error at different SNRs for objects moving along horizontal straight lines
at a constant speed of 400 nm/sec (similar to [6]). The tracking was done for two types of objects: round (σmax = σmin = 100
nm) and elongated (σmax = 300 nm, σmin = 100 nm) using the likelihoodsLS , LG, and the combined two-step approach
LSG. The filtering was performed with 500 MC samples. The RMSE forall three models is shown in Fig. 3. The localization
error of the hierarchical search is lower and the effective sample sizeNeff is higher than in the case of using onlyLG. For
comparison, for the likelihoodsLS , LG, andLSG, the ratios between the effective sample sizeNeff andNs are less than 0.5,
0.005, and 0.05, respectively.

3) Comparison with Conventional Two-Stage Tracking Methods: The proposed PF-based tracking method was compared
to conventional two-stage (completely separated detection and linking) tracking approaches commonly found in the literature.
To maximize the credibility of these experiments, we chose to use two existing, state-of-the-art multitarget trackingsoftware
tools based on this principle, rather than making our own (possibly biased) implementation of described methods. The first is
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Fig. 3. The RMSE in object position estimation as a function ofSNR for round (left) and elongated (right) objects using thethree different observation
models,LG, LS , andLSG.
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Fig. 4. Example (SNR=3) showing the ability of our PF method to deal with one-frame occlusion scenarios (top sequence), using the proposed reclustering
procedure, whileParticleTracker(and similarlyVolocity) fails (bottom sequence).
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Fig. 5. Typical example (SNR=3) showing the ability of our PF method to resolve object crossing correctly (top sequence), by using the information about
the object shape during the measurement-to-track association process, whileParticleTracker(and similarlyVolocity) fails (bottom sequence).
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Fig. 6. Example (SNR=3) where our PF method as well asParticleTrackerand Volocity failed (only the true tracks are shown in the sequence), because
three objects interact at one location and the occlusion lasts for more than one frame.

Volocity (Improvision, Coventry, UK), which is a commercial software package, and the second isParticleTracker[6], which
is freely available as a plugin to the public-domain image analysis tool ImageJ [65] (National Institutes of Health, Bethesda,
MD, USA).

With Volocity, the user has to specify thresholds for the object intensityand the approximate object size in order to discriminate
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TABLE I
COMPARISON OF THE ABILITY OF THE THREE METHODS TO TRACK OBJECTS CORRECTLY IN CASES OF OBJECT APPEARANCE, DISAPPEARANCE, AND

INTERACTIONS.

Volocity ParticleTracker Particle Filter
SNR r0 r1 r0 r1 r0 r1

Ntr = 10

2 1.1 0.9 1.8 0.1 1 1
3 1 1 1 0.5 1 1
4 1 1 1 0.7 1 1
5 1 1 1 1 1 1
7 1 1 1 1 1 1

Ntr = 20

2 1.15 0.5 2 0.1 1.05 0.8
3 1.05 0.6 1.95 0.15 1 0.9
4 1.05 0.6 1.35 0.45 1 0.95
5 1 0.7 1.1 0.65 1 1
7 1 0.85 1.05 0.9 1 1

Ntr = 40

2 1.9 0.05 1.7 0.1 1.05 0.5
3 1.1 0.6 1.5 0.15 1.02 0.7
4 1.05 0.7 1.42 0.2 1 0.8
5 1.04 0.8 1.22 0.35 1 0.9
7 1.02 0.8 1.17 0.33 1 0.9

objects from the background, in the detection stage. These thresholds are set globally, for the entire image sequence. Following
the extraction of all objects in each frame, linking is performed on the basis of finding nearest neighbors in subsequent
image frames. This association of nearest neighbors also takes into account whether the motion is smooth or erratic. With
ParticleTracker, the detection part also requires setting intensity and object size thresholds. The linking, however, is based on
finding the global optimal solution for the correspondence problem in a given number of successive frames. The solution is
obtained using graph theory and global energy minimization[6]. The linking also utilizes the zeroth- and second-orderintensity
moments of the object intensities. This better resolves intersection problems and improves the linking result. For both tools,
the parameters were optimized manually during each stage, until all objects in the scene were detected. Our PF-based method
was initialized using the automatic initialization procedure described in Section IV-H. The user-definable algorithmparameters
were fixed to the following values:σmax = 250 nm, σmin = 120 nm, q1 = 7500 nm2/sec3, q2 = 25 nm/sec,q3 = 0.1, and
103 MC samples were used per object. To enable comparisons with manual tracking, five independent, expert observers also
tracked the 2D synthetic image sequences, using the freely available software tool MTrackJ [66].

4) Tracking Results:First, using the 2D synthetic image sequences, we compared the ability of our algorithm,Volocity, and
ParticleTracker to track objects correctly, despite possible object appearances, disappearances, and interactions or crossings.
The results of this comparison are presented in Table I. Two performance measures are listed:r0, which is the ratio between
the number of tracks produced by the algorithm and the true number of tracks present in the data (Ntr), andr1, which is the
ratio between the number of correctly detected tracks and the true number of tracks. Ideally, the values for both ratios should
be equal to 1. A value ofr0 > 1 indicates that the method produced broken tracks. The main cause of this is the inability to
resolve track intersections in some cases (see Fig. 4 for an example). In such situations the method either initiates newtracks
after the object interaction event (because during the detection stage only one object was detected at that location, see Fig. 4),
increasing the ratior0, or it incorrectly interchanges the tracks before and afterthe interaction (see Fig. 5 for an example),
lowering the ratior1. From the results in Table I and the examples in Figs. 4 and 5, it clearly follows that our PF method is
much more robust in dealing with object interactions. The scenario in the latter example causes no problems for the PF, as,
contrary to two other methods, it exploits information about object appearance. During the measurement-to-track association,
the PF favors measurements that are close to the predicted location and that have an elongation in the predicted direction of
motion. In some cases (see Fig. 6 for an example), all three methods fail, which generally occurs when the interaction is too
complicated to resolve even for expert biologists.

Using the same data sets and tracking results, we calculatedthe RMSE in object position estimation, as a function of
SNR. To make a fair comparison, only the results of correctlydetected tracks were included in these calculations. The results
are shown in Fig. 7. The localization error of our algorithm is in the range of 10–50 nm, depending on the SNR, which is
approximately 2–3 times smaller than for manual tracking. The error bars represent the interobserver variability for manual
tracking, which, together with the average errors, indicate that the performance of manual tracking degrades significantly for
low SNRs, as expected. The errors of the three automated methods show the same trend, with our method being consistently
more accurate than the other two. This may be explained by thefact that, in addition to object localization by center-of-mass
estimation, our hierarchical search performs further localization refinement during the second step (22). The RMSE in Fig.
7 is larger than in Fig. 3, because, even though only correct tracks were included, the accuracy of object localization during
multiple object tracking is unfavorably influenced at places where object interaction occurs.
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Fig. 7. The RMSE in object position estimation as a function ofSNR for our algorithm (Particle Filter) versus the two otherautomatic methods (Volocity
andParticleTracker) and manual tracking (five observers) based on synthetic imagedata.

Our algorithm was also tested on the 3D synthetic image sequences as described, using 20 MC simulations. The RMSEs
for the observation modelLSG ranged from≈ 30 nm (SNR= 7) to ≈ 70 nm (SNR= 2). These errors were comparable to
the errors produced byVolocity (in this test,ParticleTrackerwas excluded, as it is limited to tracking in 2D+t). Despite the
fact that the axial resolution of the imaging system is approximately three times lower, the localization error was not affected
dramatically relative to the 2D+t case. The reason for this is that in 3D+t data, we have a larger number of informative image
elements (voxels). As a result, the difference in the RMSEs produced by the estimators employed in our algorithm and in
Volocity is less compared to Fig. 7.

B. Evaluation on Real Data

1) Image Acquisition:In addition to the computer generated image data, real 2D fluorescence microscopy image sequences
of MT dynamics were acquired. COS-1 cells were cultured and transfected with GFP-tagged proteins as described [64], [67].
Cells were analyzed at 37oC on a Zeiss 510 confocal laser scanning microscope (LSM-510). In most experiments the optical
slice separation (in thez-dimension) was set to 1µm. Images of GFP+TIP movements in transfected cells were acquired every
1–3.5 seconds. For different imaging setups, the pixel sizeranged from70 × 70 nm2 to 110 × 110 nm2. Image sequences of
30–50 frames were recorded and movies assembled using LSM-510 software. Six representative data sets (30 frames of size
512 × 512 pixels), examples of which are shown in Fig. 1, were preselected from larger volumes by manually choosing the
regions of interest. GFP+TIP dashes were tracked in different cell areas. Instantaneous velocities of dashes were calculated
simply by dividing measured or tracked distances between frames by the temporal sampling interval.

2) Comparison with Manual Tracking:Lacking ground truth for the real data, we evaluated the performance of our algorithm
by visual comparison with manual tracking results. In this case, the latter were obtained from two expert cell biologists, each
of which tracked 10 moving MTs of interest by using the aforementioned software tool MTrackJ. The selection of target MTs
to be tracked was made independently by the two observers. Also, the decision of which feature to track (the tip, the center,
or the brightest point) was left to the observers. When done consistently, this does not influence velocity estimations, which is
what we focused on in these experiments. The parameters of our algorithm (run with the modelLSG) were fixed to the same
values as in the case of the evaluation on synthetic data.

3) Tracking Results:Distributions of instant velocities estimated using our algorithm versus manual tracking are presented
in Fig. 8. The graphs show the results for the data sets of Fig.1(a) and (f), for which SNR≈ 5 and SNR≈ 2, respectively. A
visual comparison of the estimated velocities per track, for each of the 10 tracks (the average track length was 13 time steps),
is presented in Fig. 9, with more details for two representative tracks shown in Fig. 10. Application of a paired Studentt-test
per track revealed no statistically significant differencebetween the results of our algorithm and that of manual tracking, for
both expert human observers (p≫ 0.05 in all cases). Often, biologists are interested in average velocities over sets of tracks.
In the described experiments, the difference in average velocity (per 10 tracks) between automatic and manual trackingwas
less than1%, for both observers. Our velocity estimates are also comparable to those reported previously based on manual
tracking in the same type of image data [64].

Finally, we present two different example visualizations of real data together with the results of tracking using our algorithm.
Fig. 11 shows the results of tracking in the presence of photobleaching, which clearly illustrates the capability of ouralgorithm
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Fig. 8. Examples of velocity distributions obtained with ourautomatic tracking algorithm versus manual tracking appliedto real fluorescence microscopy
image sequences of growing MTs. Results are shown for the datasets in Fig. 1(a) (top) and Fig. 1(f) (bottom).
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Fig. 9. Results of velocity estimation for 10 representativeMT objects in real fluorescence microscopy image sequences using our automatic tracking
algorithm versus manual tracking for the data sets in Fig. 1(a) (top) and Fig. 1(f) (bottom). Shown are the mean values (blackor white squares) and±1
standard deviation (bars) of the estimates.

to initiate new tracks for appearing objects, to terminate tracks for disappearing objects, and to deal with closely passing
objects. The rendering in Fig. 12 gives a visual impression of the full tracking results for a few time frames of one of the real
data sets used in the experiments.

VI. D ISCUSSION ANDCONCLUSIONS

In this paper we have demonstrated the applicability of particle filtering for quantitative analysis of subcellular dynamics.
Compared to existing approaches in this field, our approach is a substantial improvement for detection and tracking of large
numbers of spots in image data with low SNR. Conventional methods, which perform object detection prior to the linking stage,
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Fig. 11. Results (six tracks) of automatically tracking MTs (bright spots) in the presence of photobleaching, illustrating the capability of our algorithm to
capture newly appearing objects (tracks 5 and 6) and to detect object disappearance (for example track 4). It also shows the robustness of the algorithm in
the case of closely passing objects (tracks 1 and 5).

use non-Bayesian maximum likelihood or least squares estimators. The variance of those estimators is larger than the variance
of the MMSE estimator [56], for which some prior informationabout the estimated parameters is assumed to be known. In
our case, this information is the prediction of the object position according to the motion model. This step, which optimally
exploits available temporal information, makes our probabilistic tracking approach perform superior in the presenceof severe
noise in comparison with existing frame-by-frame approaches, which break down at SNR< 4–5 [12], [13]. As the experiments
show, contrary to two other popular tracking tools, our algorithm still yields reliable tracking results even in data with SNR as
low as 2 (which is not uncommon in practice). We note that the comparison with these two-stage tracking approaches mainly
evaluated the linking parts of the algorithms, as the detection part is based on thresholding, and the parameters for that stage
were optimized manually until all the desired objects were localized. In practice, since these algorithms were not designed
specifically to deal with photobleaching effects, they can be expected to perform worse than reported here.

The results of the experiments on synthetic image data suggest that our algorithm is potentially more accurate than manual
tracking by expert human observers. The experiments on realfluorescence microscopy image sequences from MT dynamics
studies showed comparable performance. This is explained by the fact that in the latter experiments, we were limited to
comparing distributions and averages (Figs. 8 and 9), whichmay conceal small local discrepancies, especially when the
objects’ velocities vary over time. Instant velocities were also analyzed per track (Fig. 10) but could not be quantitatively
validated due to the lack of ground truth. Nevertheless, theresults indicate that our algorithm may replace laborious manual
procedures. Currently we are evaluating the method also forother biological applications to further demonstrate its advantages
over current means of manual and automated tracking and quantification of subcellular dynamics. Our findings encourage use
of the method to analyze complex biological image sequencesnot only for obtaining statistical estimates of average velocity
and life span, but also for detailed analyses of complete life histories.
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Fig. 12. Visualization of tracking results (80 tracks) produced by our algorithm in the case of the real fluorescence microscopy image sequence of Fig. 1(a).
Left: Trajectories projected on top of one of the frames, giving an impression of the MT dynamics in this image sequence. Right: Five frames from the
sequence (time is increasing from bottom to top) with the trajectories rendered as small tubes connecting the frames. The rendering was accomplished using
a script developed in-house based on the Visualization Toolkit [68].

The algorithm was implemented in the Java programming language (Sun Microsystems Inc., Santa Clara, CA) as a plugin
for ImageJ (National Institutes of Health, Bethesda, MD [65]), a public domain and platform independent image processing
program used abundantly in biomedical image analysis [69].Running on a regular PC (a Pentium IV with 3.2 GHz CPU and
3 GB of RAM) using the Java Virtual Machine version 1.5, the processing time per object per frame using103 MC particles
is about 0.3 sec. This cost is independent of image size, because all computations are done only for measurements falling
inside the gates (defined for each track). We expect that faster execution times are still possible, after further optimization of
the code. In the near future the algorithm will be integratedinto a user-friendly software tool which will be made publically
available.

The recursive nature of the proposed method (only the measurements up to timet are required in order to estimate the object
positions at timet) can be effectively utilized to dramatically increase the throughput of live cell imaging experiments. Usually
time-lapse imaging requires constant adjustment of the imaging field and focus position to keep the cell of interest centered
in the imaged volume. There are basically two methods to track moving objects with a microscope. Most commonly, images
are acquired at a fixed stage and focus position and the movements are analyzed afterwards, using batch image processing
algorithms. The second possibility, rarely implemented, is to program the microscope to follow the movements of the cell
automatically and keep it in the field of view. Such tracking systems have been developed previously [70]–[72], but they
are either hardware-based or not easily portable to other microscopes. Using the proposed software-based tracking method,
however, it can be implemented on any fluorescence microscope with motorized stage and focus. The prediction step of the
algorithm can be used to adapt the field of view and steer the laser in the direction of moving objects. This also suggests a
mechanism for limiting laser excitation and thereby reducing photobleaching.
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