
Chapter Two

Quantitative Comparison

of Spot Detection Methods

in Fluorescence Microscopy

Not everything that can be counted counts, and not everything

that counts can be counted.

— Albert Einstein (1879-1955)

Abstract — Quantitative analysis of biological image data generally involves the
detection of many subresolution spots. Especially in live cell imaging, for which flu-
orescence microscopy is often used, the signal-to-noise ratio (SNR) can be extremely
low, making automated spot detection a very challenging task. In the past, many
methods have been proposed to perform this task, but a thorough quantitative eval-
uation and comparison of these methods is lacking in the literature. In this chapter,
we evaluate the performance of the most frequently used detection methods for this
purpose. These include six unsupervised and two supervised methods. We perform
experiments on synthetic images of three different types, for which the ground truth
was available, as well as on real image data sets acquired for two different biological
studies, for which we obtained expert manual annotations to compare with. The
results from both types of experiments suggest that for very low SNRs (≈2), the
supervised (machine learning) methods perform best overall. Of the unsupervised
methods, the detector based on the so-called h-dome transform from mathematical
morphology performs comparably, and has the advantage that it does not require a
cumbersome learning stage. At high SNRs (>5), the difference in performance of
all considered detectors becomes negligible.

Based upon: I. Smal, M. Loog, W. J. Niessen, E. Meijering, “Quantitative Comparison of Spot
Detection Methods in Fluorescence Microscopy”, submitted.
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2.1 Introduction

T
he very first stage in the analysis of biological image data generally deals with
the detection of objects of interest. In fluorescence microscopy, which is one
of the most basic tools used in biology for the visualization of subcellular

components and their dynamics [88, 100, 113, 156, 164, 180], the objects are labeled
with fluorescent proteins and appear in the images as bright spots, each occupying
only a few pixels (see Fig. 2.1 for sample images). Digital image analysis provides
numerical data to quantify and substantiate biological processes observed by fluores-
cence microscopy [3, 45, 97, 185, 191]. Such automated analysis is especially valuable
for high-throughput imaging in proteomics, functional genomics and drug screen-
ing [42, 103]. Nevertheless, obtaining accurate and complete measurements from the
image data is still a great challenge [38]. In many cases, the quality of the image data
is rather low, due to limitations in the image acquisition process. This is especially
true in live cell imaging, where illumination intensities are reduced to a minimum
to prevent photobleaching and photodamage, resulting in a very low signal-to-noise
ratio (SNR) [53, 95, 96]. In addition, despite recent advances in improving optical
microscopy [51,63], the resolution of even the best microscopes available today is still
rather coarse (on the order of 100 nm) compared to the size of subcellular struc-
tures (typically only several nanometers in diameter), resulting in diffraction-limited
appearance. As a consequence, it is often difficult, even for expert biologists, to
distinguish objects from irrelevant background structures or noise.

In practice, automated object detection methods applied to fluorescence mi-
croscopy images either report too many false positives, thus corrupting the analysis
with the presence of nonexistent objects, or they detect less objects than are in fact
present, causing subsequent analyses to be biased towards more clearly distinguishable
objects. This is also a serious issue in time-lapse imaging, where the objects of interest
are to be tracked over time to study their dynamics. In common tracking algorithms,
which consist of separate detection (spatial) and linking (temporal) stages [95, 96],
the performance of the detector is crucial: poor detection likely causes the linking
procedure to yield nonsensical tracks, where correctly detected objects in one frame
are connected with false detections in the next (and vice versa), or where tracks
are terminated prematurely because no corresponding objects were detected in the
next frame(s). Modern tracking approaches, based on Bayesian estimation [141,142],
avoid the hard decision thresholds in the detection stage of conventional approaches,
and describe object existence in terms of probability distribution functions (pdf).
Such real-valued pdfs reflect the degree of believe in the presence of an object at
any position in the image in a more “continuous” fashion, in contrast with the bi-
nary representation (either “present” or “not present”) obtained after applying hard
thresholds. Nevertheless, even in probabilistic tracking frameworks, some form of “de-
terministic” object detection is still necessary in the track initiation and termination
procedures [141,142,146], again illustrating the relevance of having a good spot detec-
tor. Several detectors have been proposed in the literature, and the classic, relatively
simpler methods have been compared previously for tracking [26,32], but a thorough
quantitative comparison including recent, more complex methods is missing.

In this study, we compare several detectors that are frequently used for object
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detection in fluorescence microscopy imaging, and quantify their performance using
both synthetic images and real image data from different biological studies. The
sensitivity of the methods is studied as a function of their parameters and image
quality (expressed in terms of SNR). The methods under consideration range from
relatively simple local background subtraction [185], to linear or morphological image
filtering [20,21,128,142,146,161], to wavelet-based multiscale products [52,108], and
machine learning methods [73]. They can be divided into two groups: unsupervised
and supervised. The first consists of algorithms that (implicitly or explicitly) assume
some object appearance model and contain parameters that need to be adjusted ei-
ther manually or semi-automatically in order to get the best performance for a specific
application. Supervised methods, on the other hand, “learn” the object appearance
from annotated training data—usually a large number of small image patches con-
taining only the object intensity profiles (positive samples) or irrelevant background
structures (negative samples).

This chapter is organized as follows. First, in Section 2.2, we provide background
information on the image formation process in fluorescence microscopy and describe
the object detection framework in general. This helps to put the different detection
methods in proper perspective and provides motivations for some of the choices made
later on in the chapter. The detection methods that were considered in this study
and that implement the general framework are described in Section 2.3. Next, in
Section 2.4, we present the experimental results of applying the detection methods to
synthetic images, for which ground truth was available, as well as to real fluorescence
microscopy image data from several biological studies. A concluding discussion of the
main findings and their implications is given in Section 2.5.

2.2 Detection Framework for Fluorescence

Microscopy

2.2.1 Image formation

In fluorescence microscopy, specimens are labeled with fluorophores. The distribution
of fluorescence caused by exciting illumination is then observed and captured by
a photosensitive detector (usually a CCD camera or a photomultiplier tube) that
measures the intensity of the emitted light and creates a digital image of the sample.
The objects of interest in our application appear in images as blurred spots, which
are relatively small and compact, have no clear borders (which is why we prefer
to speak of “detection” rather than “segmentation”), and their intensity is higher
than the background. The blurring is caused by the diffraction phenomenon and
imperfections of the optical system, which for commonly used confocal microscopes
limits the resolution to about 200 nm laterally and 600 nm axially [95,161,185,190].
This is characterized by the point spread function (PSF) of the system, which is the
image of a point source of light. In our applications, the theoretical PSF, which
can be expressed by the scalar Debye diffraction integral [190], can in practice be
approximated by a 2D or 3D Gaussian PSF [161], depending on the dimensionality
of the image data.
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(a) (b)

(c) (d)

Figure 2.1. Sample images of microtubules (a,b,d) and peroxisomes (c) labeled
with green fluorescent protein (GFP) and imaged using confocal microscopy. The
images are single frames from 2D time-lapse studies, acquired under different exper-
imental conditions. The quality of the images ranges from SNR≈ 4–6 (a,c) to ≈ 2–4
(b,d).

Apart from the diffraction-limited spatial resolution, another major source of
aberrations introduced in the imaging process is intrinsic photon noise, which results
from the random nature of photon emission. Photon noise, which is independent
of the detector electronics, can be reduced (and, consequently, the SNR increased)
only by increasing the light intensity or the exposure time. However, increasing the
light intensity in order to improve the image quality causes the fluorescent signal to
fade permanently due to photon-induced chemical damage and covalent modification,
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Figure 2.2. Object detection framework. The original noisy image (a) is prepro-
cessed with some noise reduction method, and the resulting image (b) is transformed
(enhanced) into a new image (c), in which the possible object locations have higher
signal magnitude than all other structures (d), or all the suspicious locations are
marked (e). The threshold (represented by the dark-gray planes in (d) and (e)) is
applied and the connected components in the binarized image (white clusters on the
black background) are counted as the detected objects.

a process called photobleaching [185]. While this effect can be exploited to study
specific dynamical properties of particle distributions [87, 156], it hampers detection
and tracking of individual fluorescent particles. With a laser as excitation source,
photobleaching is observed on the time scale of microseconds to seconds, and should
be taken care of especially in time-lapse microscopy.

In this study, we deal with subresolution objects (blurred spots) on a possibly
nonuniform background, the appearance of which can be modeled using a Gaussian
approximation of the PSF. While for experimental and illustration purposes we limit
ourselves to 2D image data, all detection methods considered in this chapter can be
applied straightforwardly to 3D data without any substantial changes. Each image
I consist of Nx × Ny pixels, where each pixel corresponds to a rectangular area of
dimension ∆x × ∆ynm2 and the measured intensity at position (i, j) is denoted as
I(i, j). In other words I = {I(i, j) : i = 1, . . . , Nx, j = 1, . . . , Ny}. In order to
model different types of subcellular particles (round or elongated appearance), we
use an asymmetric 2D Gaussian function. In this case, the measured intensity at
(i, j) caused by the fluorescent light source located at (x, y), which is the real-valued
position within the image, is given by

I(i, j) = B(i, j) + exp

(

−1

2
mT RT Σ−1Rm

)

, (2.1)
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and −π < φ ≤ π defines the rotation, B(i, j) is the background intensity distribution,
and the parameters σmax and σmin represent the blurring induced by the PSF and,
at the same time, model the elongation of the object. For symmetrical subresolution
structures such as vesicles, σmin = σmax ≈ 80–100 nm, and for the elongated objects,
such as microtubules, σmin ≈ 80–100 nm and σmax ≈ 250–300 nm [141,161]. Concern-
ing the density of objects in our applications, typical 512×512-pixel images contain
around 50–200 objects.

2.2.2 Detection Framework

Before we describe the different detection approaches evaluated in this chapter, we
first consider the detection framework in general (Fig. 2.2). This framework can be
split into three subsequent steps. Each detector considered in this chapter includes
these steps, but may implement them in a different way. In practice, some of the
steps are optional or can be combined. Taking as input the noisy images containing
the objects of interest, possibly embedded in a nonuniform background (Fig. 2.2(a)),
the detector proceeds as follows:

Step 1 (Noise Reduction): The input image I is preprocessed using noise reduction
techniques. In most cases, Gaussian smoothing [159] or matched filtering [165] is used,
which may increase the SNR and improve image quality and object visibility. The
output of this step is a filtered image J (Fig. 2.2(b)).

Step 2 (Signal Enhancement): In this step, signal processing techniques are used
that enhance the denoised fluorescent light signal only in those regions of the image J
where the actual objects are and, at the same time, suppress the light signal from all
the background structures. That is, the image J is transformed to a new grayscale
image C (Fig. 2.2(c)), also called here the grayscale classification map, which does
not necessarily represent the object intensity distribution anymore. At this stage, the
image C is rather a 2D (or 3D) signal, the value of which at any pixel measures the
certainty in the object presence at that position. In other words, the image C can
also be considered a probability map that describes possible object locations. Two
examples of this classification map are shown in Fig. 2.2(d) and Fig. 2.2(e), where
the image C in Fig. 2.2(d) is the result of applying a correlation based technique (in
this case a matched filter), which convolves the image J with a PSF-like kernel and
produces a high response in regions where objects are present (where the image inten-
sity distribution matches the kernel), and a low response in all other image regions,
suppressing the background structures. The image C in Fig. 2.2(e) corresponds to
the situation where local background subtraction is used based on the h-dome trans-
formation [177], which “cuts off” the local maxima in the image J in the dome-like
shape of equal heights.

The described feature enhancement step does not actually detect features or ob-
jects. At this stage no quantitative information (about the object presence, its posi-
tion, size, etc.) can yet be extracted and it is still up to the observer to visually link
pixels that belong to one object.

Step 3 (Signal Thresholding): To obtain the number of objects and extract posi-
tion information from the grayscale classification map, hard (binary) decision thresh-
olds need to be applied. First, the image C is thresholded, where the threshold ld is
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applied to the signal magnitude and the binary map CB is obtained (Fig. 2.2(d,e)).
Disjoint clusters of connected nonzero pixels in CB correspond to detected objects and
can be used to label the pixels in the original image I for subsequent analysis of the
object intensity distribution. Depending on the image C, the result of thresholding
may be sensitive to the value of ld. In that case, a second threshold vd = (vmin, vmax)
may be applied to the size and/or shape of the clusters: only those clusters in CB

with size larger than vmin and smaller than vmax are labeled as detected objects.
In practice, the signal thresholding with ld does not always produce fully con-

nected regions (clusters of pixels) in CB , in places where the true objects are located.
In most cases, because the noise is not completely removed during Step 1, clusters
of nonzero pixels in CB that belong to the same spot are not connected or contain
erroneous zero-pixels inside the cluster. In order to solve this problem, the closing
operation from mathematical morphology [138,149,185] is frequently used as a post-
processing step.

2.3 Detection Methods

In this section we describe the detection methods that were included in our study. All
of them implement the three main steps of the general detection framework presented
in the previous section. Some of the methods require noise reduction as an explicit
preprocessing step to improve the detection performance, and in our analysis we
include two techniques for this purpose (Gaussian filtering and wavelet denoising)
that are computationally fast, easy to implement, and which are frequently used in
practice (Section 2.3.1). The most characteristic feature of any detection method is its
implementation of the second step of the framework (signal enhancement). As pointed
out in the introduction, we make a distinction between unsupervised (Section 2.3.2)
and supervised (Section 2.3.3) detection techniques. Some of them inherently reduce
noise and thus do not require an explicit noise reduction step. The third step (signal
thresholding) determines the final outcome of the detector, which is used to assess its
performance. In the last subsection (Section 2.3.4) we describe how performance was
measured in our study.

2.3.1 Noise Reduction

2.3.1.1 Gaussian Smoothing

Noise reduction in this case consists of smoothing the original image I with the
Gaussian kernel Gσ at scale σ. The filtered image J is obtained as

J(i, j) = (Gσ ∗ I)(i, j) =

Nx
∑

i′=1

Ny
∑

j′=1

Gσ(i− i′, j − j′)I(i′, j′), (2.2)

where * denotes the convolution operation. (Here, and in the rest of the chapter, for
all methods that require the convolution of an image with a filter kernel or mask, the
image is mirrored at the borders.) In the case of additive uncorrelated noise, this
smoothing can be related to matched filtering [165], which maximizes the SNR in
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the filtered images. This is because the PSF, which models the appearance (intensity
profile) of the subcellular objects, can be approximated to a high degree of accuracy
by a Gaussian [190]. The smoothed image J can also be used as the grayscale
classification map C, due to the fact that the image J is a correlation map that shows
where objects similar in shape to the PSF are located. The object locations can be
extracted by thresholding the image J in Step 3 (see Fig. 2.2), but this approach
does not work in practice for typical images, which usually contain inhomogeneous
backgrounds and varying object intensities.

2.3.1.2 Isotropic Undecimated Wavelet Denoising

This wavelet-based filtering technique is frequently used for image denoising in dif-
ferent applications [152], but also for building a separate detection procedure (Sec-
tion 2.3.2.1) [52,108]. The isotropic undecimated wavelet transform (IUWT) [152,154]
is well adapted to the analysis of images which contain isotropic sources, such as in
astronomy [154] or in biology [52, 108], where the object appearance or shape is dif-
fuse (no clear edges) and more or less symmetric. The denoising is accomplished by
modifying the relevant wavelet coefficients and inverse transforming the result. The
IUWT is usually favored over orthogonal discrete wavelet transforms (DWT) for this
purpose [91]. Contrary to the DWT, the IUWT is redundant, but translation invari-
ant, and the wavelet coefficient thresholding using an undecimated transform rather
than a decimated one normally improves the result in denoising applications [151].

We used the B3-spline version of the separable 2D IUWT [108, 152], which de-
composes the original image into K wavelet planes (detail images) and a smoothed
image, all of the same size as the original image. The image I is first convolved row
by row and then column by column with the 1D kernel [1/16, 1/4, 3/8, 1/4, 1/16],
which is modified depending on the scale k by inserting 2k−1 − 1 zeros between every
two taps. The image Ik−1(i, j) is convolved with the kernel giving a smoothed image
Ik(i, j), and the wavelet plane is computed from these two images as

Wk(i, j) = Ik−1(i, j) − Ik(i, j), 0 < k ≤ K, (2.3)

where I0(i, j) = I(i, j). Having the wavelet representation as a set of K + 1 images,
W1, . . . ,WK , IK , also called the à trous wavelet representation, the reconstruction can
be easily performed as

I(i, j) = IK(i, j) +

K
∑

k=1

Wk(i, j). (2.4)

For denoising and object detection, the property of the wavelets to be localized in
both space and frequency plays a major role, as it allows separation of the components
of an image according to their size. The large values of Wk(i, j) correspond to some
structures and the smaller ones usually to noise. The denoising is based on the
modification of the images Wk(i, j), by hard-thresholding the coefficients, and using
the modified images W̃k(i, j) = Td(Wk) in the inverse transformation (2.4). Here, the



2.3 Detection Methods 25

thresholding operator Td : I → Ith is defined as

Ith(i, j) =

{

I(i, j), if |I(i, j)| ≥ d,

0, otherwise.
(2.5)

The hard threshold d depends on the standard deviation of the wavelet coefficients
σk per resolution level, and is usually taken to be 3σk. Alternatively, the wavelet
coefficients may be soft-thresholded according to more advanced schemes [47, 153].
However, for astronomical and also for biological images, soft thresholding should be
avoided, as it leads to photometry loss in regard to all objects [153].

In order to reduce the dependence of the threshold d on the absolute values of the
object and background intensities, the thresholding is often based on Bayesian analysis
of the coefficient distributions using Jeffrey’s noninformative prior [47] (also called the
amplitude-scale-invariant), which is a nonlinear shrinkage rule that outperforms other
famous shrinkage rules, including VisuShrink and SureShrink [47], and is given by

W̃k(i, j) = W−1
k (i, j)(W 2

k (i, j) − 3σ2
k)+, (2.6)

where (x)+ = max{x, 0}. The threshold is proportional to the standard deviation
of wavelet coefficients at each resolution level and it adaptively selects significant
coefficients only. The modified filtered images W̃k(i, j) are used in (2.4) for the inverse
transformation to obtain the denoised image J .

2.3.2 Unsupervised Signal Enhancement

2.3.2.1 Wavelet Multiscale Product

As was mentioned in Section 2.3.1.2, in the à trous wavelet representation, contrary
to the frequently used orthogonal wavelet transform [91], the wavelet coefficients are
correlated across the resolution levels (scales). This property is exploited by the
detection approach based on the multiscale product [108], which uses the same image
decomposition as in Section 2.3.1.2 and creates the multiscale product image as

PK(i, j) =

K
∏

k=1

Wk(i, j). (2.7)

This transformation constitutes Step 2 in the general detection framework (Sec-
tion 2.2.2). For better performance, the original algorithm [108] also includes the
noise reduction step (Step 1) using the technique described in Section 2.3.1.2: the
wavelet coefficients are hard-thresholded per scale, W̃k(i, j) = Tdk

(Wk(i, j)), with the
threshold dk = kdσk, kd = 3, and the modified coefficients W̃k(i, j) are used in (2.7).

This method uses the fact that the real objects are represented by a small number
of wavelet coefficients that are correlated across the scales. Contrarily, the coefficients
that are due to noise are randomly distributed and are not propagated across scales.
As a result, the image PK(i, j), which is the grayscale classification map C, is thresh-
olded with ld and binarized. The connected components in the binary map CB are
considered as detected objects (Step 3). In the original algorithm [108], ld = 1.0 and
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no thresholds on the cluster size vd in the thresholded and binarized PK(i, j) were im-
posed [108]. In summary, this method has three parameters, (ld, kd,K), that are not
directly related to the object appearance. Recently, a modification of the described
method, which uses the Gaussian kernel at several scales instead of B3-splines, was
proposed for segmentation and analysis of nuclear components in stem cells [176].

2.3.2.2 Top-Hat Filter

Another class of methods that are used for detection of bright spots in the presence
of widely varying background intensities is known as top-hat filters [20, 21]. Such
filters are dynamic thresholding operators, rather than the similarly named image
transformation from mathematical morphology. The latter transformation selects
extended objects with sufficiently narrow parts, rather than compact objects, as does
the top-hat filter considered here.

The filter discriminates the spots by their round shape and predetermined infor-
mation about their intensity and size. At each pixel location, (i, j), the average image
intensitiy Ītop and Ībrim are calculated for pixels within two circular regions Dtop and
Dbrim, respectively, defined as

Di,j
top = {(i′, j′) : (i− i′)2 + (j − j′)2 < R2

top}, (2.8)

Di,j
brim = {(i′, j′) : R2

top < (i− i′)2 + (j − j′)2 < R2
brim}, (2.9)

where the radius Rtop corresponds to the “top” of the “hat” and is set to the maximum
expected spot radius. The brim radius, Rbrim (Rbrim > Rtop), is often taken to be
the shortest expected distance to the neighboring spot. If the difference Ītop− Ībrim is
larger than some threshold Hth, the original image intensity I(i, j) for that position
(i, j) is copied to the classification map C, C(i, j) = I(i, j), otherwise C(i, j) = 0. The
procedure is repeated for each pixel, and the binary map CB (Step 3) is obtained as
CB(i, j) = 1 if C(i, j) 6= 0, and CB(i, j) = 0 otherwise. The connected components
are counted without any size or shape threshold.

The height Hth of the top above the brim is set to the minimum intensity that a
spot must rise above its immediate background. It can also be related to the minimum
local SNR that we are willing to deal with. If the detection of all the objects with
local SNR > a is required, because for lower SNRs the detector would produce a lot
more false positives and contaminate the analysis, the threshold Hth can be fixed
to aσbrim, where σbrim is the standard deviation of the intensity distribution in the
region Dbrim.

In summary, the described algorithm has only three parameters, (Hth, Rtop, Rbrim),
which can be related to the object appearance. The noise reduction (Step 1) in this
case is implicitly done while calculating the average image intensitiy Ītop and Ībrim.
The averaging decreases the variance in the estimation of the noisy object and back-
ground intensity levels and improves the robustness and performance of the method.
A slightly modified version of the filter, called the top-hat box filter [20], uses a square
mask for the regions Dtop and Dbrim and is computationally faster, but in the present
context this is not an important advantage.
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2.3.2.3 Spot-Enhancing Filter

The optimal filter for enhancing subresolution particles and reducing correlated noise
in microscopy images is the whitened matched filter, which is well approximated by the
Laplacian of a Gaussian (LoG) [128]. In this case, the convolution kernel (2σ2

L − i2 −
j2)σ−4

L GσL
is used in (2.2) to obtain the image J , where the filter parameter σL must

be tuned to the size of the particles. The filter combines Steps 1 and 2 and operates
as a local background subtraction technique that preserves object-like structures and
removes the background and noise. The filter can be made computationally fast by
separable implementation [128]. The result of LoG filtering, the image J , is used
as the classification map C, which is thresholded with ld to locate the objects. This
detection procedure has two parameters, (σL, ld), and is similar to the top-hat filter
(Section 2.3.2.2), with the difference that here the convolution kernel, also called the
“Mexican hat”, represents a continuous version of the top-hat filter mask.

2.3.2.4 Grayscale Opening Top-Hat Filter

Similar to the method above (Section 2.3.2.2), this top-hat filter uses the opening
operation from mathematical morphology [138, 147, 149]. In order to improve the
detector performance, the original image I is first smoothed with the Gaussian kernel
with scale σ (Step 1) and the grayscale opening of J with a structuring element
A is done, producing the image JA, where in our case a flat disk of radius rA is
used. The radius rA is related to the size of the largest objects that we would like to
detect. The top-hats are obtained after the subtraction C = J −JA (which concludes
Step 2), and the whole transformation acts as a background subtraction method that
leaves only compact structures smaller than the disk A, or extended objects with
sufficiently narrow parts, rather than compact objects only, as does the top-hat filter.
The resulting image C is thresholded at level ld (Step 3), and then all the connected
components are counted. Additional filtering with vd can be done if the size of the
connected components should be taken into account. Thus, this method has four
parameters, (σ, rA, ld, vd), all of which can be related to the object appearance.

2.3.2.5 H-Dome Based Detection

Another approach borrowed from grayscale mathematical morphology is based on
the h-dome transformation [177], which was used in our previous works on subreso-
lution particle tracking to design a detection scheme for track initiation and termina-
tion [142,146]. The transformation has the interesting property that all the detected
objects end up having the same maximum intensity in the transformed image, which
we exploited to build a fast probabilistic tracker that outperforms current determin-
istic methods [146] and at the same time has the same tracking accuracy as the
computationally more expensive particle filtering approaches for tracking [141,146].

For this method we assume that the intensity distribution in the image I is formed
by No objects (bright spots), modeled using (2.1), background structures (also called
clutter) with intensity distribution B(i, j), and possibly spatially correlated additive
or multiplicative noise η(i, j). The main problem is to accurately estimate the number
of real objects No and the object positions (xl, yl)

T , l = {1, . . . , No}, in the presence
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of inhomogeneous background structures and noise. The algorithm also consists of
three steps: filtering, h-dome transformation, and “sampling” (signal thresholding).
First, the image I is LoG filtered with scale σL, which enhances the signal in the
places where objects are present and performs local background subtraction (Step 1).
The scale σL can be related to the size of the objects to be detected, and in our
experiments is equal to 2.5 pixels (125 nm). Then, grayscale reconstruction [177] is
performed on the LoG-filtered image J with mask image J − h, where h > 0 is a
constant (Step 2). As a result, the original image is decomposed into the reconstructed
image Bσ and the so-called h-dome image Hσ:

Iσ(i, j) = Hσ(i, j) + Bσ(i, j). (2.10)

Geometrically speaking, similar to local background subtraction, the h-dome transfor-
mation extracts bright structures by “cutting off” the intensities of height h from the
top, around local intensity maxima, producing “dome”-like structures. Contrary to
top-hat filtering [177], this does not involve any shape or size criteria. The image Bσ

represents the nonuniform background structures, and image Hσ contains the objects
and all the smaller noise structures.

After the transformation, the maximum intensity of those Gaussian-like objects is
approximately h, and for the noise structures the amplitude is less than h [146]. This
transformed image Hσ is used as a probability map for the final step of the algorithm
(Step 3): the sampling. During this step, all the pixel values in Hσ are raised to the
power s in order to compensate for the broadening of the original object intensity
distributions by the convolution with the LoG filter, and to create a highly peaked
function that resembles the probability density function (pdf) of the object location
distribution. The parameter s can be related to the maximum and minimum object
size and the scale σL [146]. The function Hs

σ(i, j) = (J(i, j) − Bσ(i, j))s is used in
our framework as a so-called importance sampling function [9], denoted by q(i, j|I),
that describes which areas of the image most likely contain the objects. We sample N
position-samples from q(i, j|I) using systematic resampling [9], xl ∼ q(i, j|I), where
l = {1, . . . , N} and x = (i, j), in order to estimate the object positions using Monte
Carlo methods. Then, the mean-shift algorithm [34] is used to cluster the samples
xl, resulting in M clusters. For each cluster, the mean position xc = (ic, jc) and the
variance Rc are computed using only the Nc samples xl belonging to that cluster:

xc = E[xl
c] = N−1

c

∑Nc

l=1 xi
c,

Rc = E[(xl
c − xc)(x

l
c − xc)

T ].
(2.11)

The following two criteria are used to distinguish between real objects and other
structures: 1) the number of samples Nc in the cluster should be larger than the
number of samples in case of sampling from the uniform intensity distribution in the
image region occupied by the cluster, and 2) the determinant of the covariance matrix
of the cluster, detRc, must be less than σ4

M/s
2, where σM characterizes the maximum

object size that we are interested in. These two thresholds are motivated by the fact
that the elements of the estimated covariance matrix Rc using the samples generated
from the intensity distribution of the real objects, are bounded from above by (σ2

max+
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σ2
L)s−1. The samples that came from noise have approximately the same variance

(Rc ≈ σ2
LIs−1), where I is the identity matrix, but since the intensity amplitude ≪ h,

the number of samples Nc in the corresponding cluster will be below the mentioned
threshold. The clutter on the other hand, having possibly high intensity values (≈ h),
produces a large number of samples, but the variance in those clusters is higher than
in the case of the largest real object characterized by σM.

The parameters σL and σM of this detection method can be related to the object
appearance. The height h is related to the SNR in the same way as in the case of the
top-hat filter (Section 2.3.2.2). The method is fairly insensitive to the free parameters
s and N [142,146] (above some minimum, sensible values, which can be found exper-
imentally and then fixed, these parameters primarily affect the computational cost of
the method, not its accuracy). Thus, in summary, this method depends mainly on
three parameters, (σL, σM , h), that need to be tuned to the application.

2.3.2.6 Image Features Based Detection

The last unsupervised method that we consider in this study is based on using some
additional image information during Step 2 that would help to distinguish the spots
from the clutter. As was shown previously [141,161], the incorporation of local curva-
ture information can be used to build a reasonably good detector for image data with
SNR > 4. The true spots in the image are characterized by a combination of convex
intensity distributions and a relatively high intensity. Noise-induced local maxima
typically exhibit a random distribution of intensity changes in all directions, leading
to a low local curvature [161]. These two discriminative features (intensity and cur-
vature) are used in combination during Step 2 to create the grayscale classification
map C using the denoised image (Step 1) J(i, j) = (Gσ ∗ I)(i, j) as follows:

C(i, j) = J(i, j)κ(i, j), (2.12)

where the curvature κ(i, j) at each pixel of J is given by the determinant of the
Hessian matrix H(i, j) [159], which itself is known to be a good blob detector [86].
The classification map C again is binarized (Step 3) using the threshold ld and possibly
the size threshold vd which are not directly related to the object appearance.

2.3.3 Supervised Signal Enhancement

In order to make our comparison study of spot detection methods more complete, we
also included two machine learning (ML) techniques. The first one is the AdaBoost
algorithm [178], which is frequently used for object detection in computer vision [50,
85,178], and was recently shown to perform well also for spot detection in molecular
bioimaging [73]. The second method is Fisher discriminant analysis (FDA), which
is a classical and well-known linear classifier, but which has not been employed for
spot detection in fluorescence microscopy up to now. It uses the same information
as AdaBoost but is computationally less expensive and much easier to understand
conceptually.
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Figure 2.3. Examples of the Haar-like features that were used in the experiments
to detect spots, and the numbers of all possible scaled and translated versions in
10×10-pixel subwindows of the image.

2.3.3.1 AdaBoost

This ML detection algorithm operates on small patches of the image around the
hypothesized spot positions (Fig. 2.3(a)) and classifies the patches (Fig. 2.3(b)) as
positive (object is present) or negative (object is absent) based on the combined
response of several simple feature-based classifiers. Usually the feature-based systems
are favored over pixel-based ones because they are much faster and can encode some
domain knowledge. A set of NF simple Haar-like features is used [111], which is
overcomplete in comparison with the real Haar basis [91], and in our case consists
of four kinds (four different rows in Fig. 2.3). For each feature ηl, l = {1, . . . , NF },
the feature value ξ(ηl) is a weighted difference between the sum of the pixels within
two (black and white) rectangular regions. The weights are chosen in such a way
that the value of the feature computed for constant-intensity images is zero. The
number of possible features, which are scaled and translated versions of the features
of each kind (Fig. 2.3), depends on the image patch size, and for 10×10-pixel image
subwindows [73] is 962 (the number of features per kind is indicated below each
feature row in Fig. 2.3). Using the integral images [178], the computation of the sums
of pixels in the rectangular regions can be performed very fast.

Having the pool of NF features ηl, and a training set consisting of NT image
patches labeled as positive and NT patches labeled as negative, we selected a variant
of the AdaBoost learning algorithm that can be used both to select a small subset
of features and to train the classifier [178]. Such a choice was made on the basis
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of recently published results of applying the AdaBoost algorithm in bioimaging [73].
The AdaBoost algorithm is used to boost the performance of a simple (weak) learning
algorithm. The weak classifier is designed to select the single feature that best sepa-
rates the positive and negative samples. In our case, this separation is accomplished
by finding the appropriate threshold dl for each feature ηl at every round during the
training stage. With each run of the algorithm, one feature is selected and added
to the set of best discriminating features. The number of runs, denoted by NAB , is
user-defined. It is known that the training error of the strong classifier approaches
zero exponentially in the number of rounds [50].

The final strong classifier is a weighted linear combination of all selected weak
classifiers. The classification map CB (Step 3) is constructed as follows. First, for
each pixel (i, j) of I the value of the feature ηl′ is computed using the corresponding
10×10-pixel image subwindow centered at (i, j) and assigned to Cl′(i, j), where l′

specifies one of the NAB features that were selected during the training. This way,
the image Cl′ is obtained. Then, the values in Cl′ are thresholded using the feature
threshold dl′ , producing a binary version Cl′

B of Cl′ . The procedure is repeated for

all NAB features, and the images Cl′

B , l′ = 1, . . . , NAB , are combined (with weights
also learned during the training) into C, which is then thresholded with the threshold
ld = 0.5 [178], producing the map CB . In the final classification map, some additional
thresholding using the size information vd (not related to the notion of spot size)
might be needed in order to remove small regions with misclassified pixels.

By applying the trained classifier to the image I (Step 2), prefiltering (Step 1)
is performed implicitly: the values of the features are the difference in average pixel
values in the black and white rectangular regions. This averaging reduces the variance
of the feature value estimation in a similar way as in the case of the top-hat filter
(Section 2.3.2.2).

2.3.3.2 Fisher Discriminant Analysis

Discriminant analysis is a statistical technique which classifies objects into one of
two or more groups based on a set of features that describe the objects [93]. We
use FDA to classify the image patches in the same way as in the AdaBoost method
(Section 2.3.3.1). For an image patch of size n × n pixels, the n horizontal rows
of pixels are concatenated into a 1-D (column) feature vector y of size n2. Having
a labeled training dataset with positive and negative samples (image patches), the
corresponding sets of features {yl

1}NT

l=1 and {yl
0}NT

l=1 are used to compute the mean µc

and the covariance matrix Σc for each class c = {0, 1}. The task of FDA is to find
the linear transformation w that maximizes the ratio

Q(w) =
(wT (µ1 − µ0))

2

wT (Σ1 + Σ0)w
. (2.13)

In some sense, Q(w) is a measure of the SNR for the class labeling, where the nu-
merator represents the between-class variation and the denominator represents the
within-class variation. It can be shown that the optimal separation occurs when
w = (Σ1 + Σ0)

−1(µ1 − µ0) [93]. This concludes the training stage. During the clas-
sification stage, when FDA is applied to patches extracted from the image I using
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a sliding subwindow of size n × n pixels, the patch is classified as positive (object is
present, CB(i, j) = 1) if the condition |wT y − µ1| < |wT y − µ0| is satisfied, and as
negative (object is absent, CB(i, j) = 0) otherwise.

The FDA classification procedure has an appealing interpretation as linear fil-
tering (similar to (2.2)) with a kernel that is learned from the training data. The
n2-dimensional vector w can be reshaped into an n × n patch, similar to the im-
age patch from which the feature vector y is formed (see examples in Section 2.4.2,
Fig. 2.17). In this case, the projection wT y, which is performed using the sliding
subwindow for each image pixel, is a convolution as in (2.2). The classification map
C is obtained by thresholding the convolution result at ld = 1

2w
t(µ1 − µ0), which is

obtained automatically because the training was performed beforehand.

2.3.4 Signal Thresholding and Performance Measures

As mentioned before, in order to locate and count the detected objects, the classi-
fication map C is binarized using the threshold ld (whose meaning depends on the
method), and the connected components are searched for. Having the binary image
CB , where CB(i, j) = 1 if C(i, j) > ld, and CB(i, j) = 0 otherwise, we run the se-
quential scan labeling algorithm [66] in order to label the connected components and
obtain the set of labels L(i, j) for all pixels, where L(i, j) ∈ {0, . . . ,M}, with L = 0
corresponding to the background and L 6= 0 denoting one of the M detected objects.
The center of mass, xm, is calculated for each of M objects, taking into account the
pixels (i, j) and the image intensity I(i, j) for all (i, j) for which L(i, j) = m. The
position is compared to the “ground truth” x0

m (known exactly in the case of syn-
thetic images, and obtained manually by approximation in the case of real biological
images). If ‖x0

m −xm‖ < ∆0, the object is counted as a true positive (TP), otherwise
the detected object is a false positive (FP). The number of false negatives (FN) is
defined as N0 − NTP, where N0 is the number of objects in the ground truth and
NTP is the number of TPs. True negative (TN) is defined as accurate detection of
the spot not to be an object. The number of TNs can be defined only for the ML
approaches during the training stage. During the actual detection with any of the
described methods, the number of TNs in the image data is undefined.

In order to measure the performance of the algorithms, we consider two common
measures: the true-positive ratio (TPR), TPR = NTP/(NTP + NFN) = NTP/N

0,
also called sensitivity, and the false-positive ratio (FPR), FPR =NFP/(NFP +NTN).
Because TN is not known for some methods, the modified version of FPR is used, given
by FPR∗=NFP/N

0. In this case, the standard receiver operating characteristic (ROC)
curve cannot be built, and the modified version, called the free-response receiver
operating characteristic (FROC) curve, is used [29,30]. To demonstrate the sensitivity
of TPR and FPR∗ to parameters, for example the threshold ld, we measure the values
ST = − (∂TPR/∂ld) and SF = − (∂FPR∗/∂ld) at ld = l∗d. The threshold l∗d is
hereafter called “optimal” and corresponds to the value for which the FPR∗ = 0.01
(only 1% false positives). The value of TPR for ld = l∗d is denoted as TPR∗. Having
ST and SF , we can compute the value ∆TPR = 0.01ST l

∗, which corresponds to the
changes in TPR (around TPR*) when the parameter value ld (or vd) is changed by
1% around l∗ (or v∗). Similarly, ∆FPR = 0.01SF l

∗ can be introduced for the FPR.
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SNR=2

Type C 
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Figure 2.4. Examples of synthetic images used in the experiments. The symmetri-
cal Gaussian intensity profiles are embedded into uniform (Type A), gradient (Type
B), and non-uniform (Type C) backgrounds.

2.4 Experimental results

The performance of the eight detection methods (six unsupervised and two supervised
methods) described in the previous section was quantitatively evaluated using both
synthetic images (Section 2.4.1) and real image data (Section 2.4.2) acquired for
different biological studies. In the experiments, we studied the dependence of the
performance (TPR and FPR∗) on parameter settings, type of object (perfectly round
or slightly elongated), and image quality (SNR). Here we describe the experimental
setups and the results.

2.4.1 Evaluation on Synthetic Image Data

2.4.1.1 Simulation Setup

The described detection methods were evaluated using synthetic but realistic 2D
images (of size 512× 512 pixels, with ∆x = ∆y = 50 nm) containing intensity profiles
of round and elongated objects modeled using (2.1) with σmax = σmin = 100 nm for
round objects, and σmax = 250 nm, σmin = 100 nm for elongated objects, for different
levels of Poisson noise in the range of SNR = 2–4. Such SNRs are typical for the real
image data acquired in our biological applications and are lower than the critical level
of SNR = 4–5, at which several classical detection methods break down [26,32]. Here,
SNR is defined as the difference in intensity between the object and the background,
divided by the standard deviation of the object noise [32].

In order to estimate the performance of the algorithms, three types of images
were created (see Fig. 2.4), for each type of object shape and for each SNR. In every
image, 256 Gaussian intensity profiles were placed at positions x0

i′,j′ = (16 + 30i′ +
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U[−10,10], 16+30j′+U[−10,10])
T , where i′ = 0, . . . , 15, j′ = 0, . . . , 15, and U[−a,a] denotes

the uniform random generator within the interval [−a, a]. This way, the objects were
randomly placed, with no overlaps in the intensity distributions. Type A images were
constructed by adding a background level of 10, similar to previous studies [32]. To
form the final noisy image, a Poisson noise generator was applied independently to
every pixel of the noise-free image. In the case of Type B images, the background
level increased linearly in the horizontal direction (see Fig. 2.4), from a value of 10 at
the left image border to 50 at the right border. Taking into account that the variance
of Poisson noise is intensity dependent, we corrected the object intensities accordingly
prior to application of the noise generator in order to keep the SNR constant over the
whole image. Finally, type C images mimic the intensity distribution in the presence of
large (compared to object size) background structures (clutter), which are sometimes
present in the real image data and can be either larger subcellular structures or
acquisition artifacts. In this case, the pixel values were sampled from the normal
distribution I0(i, j) ∼ N (0, 150). Then, the image was convolved with the Gaussian
kernel G10 and thresholded at zero-level. The final image I was obtained by adding
to T0(G10 ∗ I0) a constant background level of 10 plus the (SNR-adapted) object
intensity profiles, followed by application of Poisson noise. Examples of synthetic
images of all three types are shown in Fig. 2.4. In every experiment, the performance
of the detection techniques for each object type was evaluated by accumulating the
numbers of TP and FN for 16 images (each containing 256 ground truth objects) and
averaging the results over the 4096 objects. The distance between the ground truth
location and the object position estimated by the detector, ∆0, which defines if the
detected object is a TP or FP, was fixed to ∆0 = 200 nm (4 pixels).

2.4.1.2 Wavelet Multiscale Product

For the performance evaluation of the wavelet multiscale product detector (further
abbreviated as WMP), the parameters of the method (see Section 2.3.2.1) were fixed
to the values described in the original paper [108]: ld = 1, K = 3, kd = 3. The
performance measures TPR and FPR∗ for the image data with SNR = 2 are shown
in Table 2.1. In order to evaluate the sensitivity of the method to parameter changes,
we varied the number of scales K and the wavelet coefficient threshold kd in our
experiments and studied their influence on the behavior of TPR and FPR∗. In the
experiments, the grayscale classification map C produced by the method was thresh-
olded at ld, and after binarization all the connected components were labeled as
detected objects. Because the method produced quite fractured clusters of pixels, we
used the morphological opening operator with a square 3 × 3 mask (a 5 × 5 mask
yielded very similar results) in order to fill in the holes.

The main results of the sensitivity analysis for this method are shown in Fig. 2.5.
They show that a value of K = 3 is a good compromise to maximize performance for
all three different data types together (Fig. 2.5(a)-(c)). The results also show that the
performance of this method drops quite rapidly when the SNR decreases from 4 to
2 (Fig. 2.5(d)), and also when the background complexity increases (Fig. 2.5(e)-(f)).
Table 2.2 shows the “optimal” values of kd for different types of data for ld = 1,
K = 3, and SNR = 2.
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Table 2.1. Performance of the WMP detector using the original algorithm param-
eters at SNR = 2.

Image Round Objects Elongated Objects
Type TPR FPR∗ TPR FPR∗

A 0.33 0.001 0.34 0.013
B 0.18 0.001 0.20 0.010
C 0.21 0.015 0.25 0.017

Table 2.2. Optimal parameters and performance of the WMP detector at SNR = 2
and number of scales K = 3.

Image Round Objects Elongated Objects
Type k∗d TPR∗ ST SF k∗d TPR∗ ST SF

A 2.22 0.81 .57 .04 3.06 .31 .61 .05
B 2.56 0.37 .56 .05 3.07 .17 .36 .05
C 2.89 0.30 .62 .09 3.17 .18 .39 .06

For comparison, we also applied the soft thresholding of the wavelet coefficients
according to (2.6) instead of the original hard thresholding with kd = 3. For round
objects in Type C images at SNR = 2, using the hard threshold kd = 3, we had
FPR∗ = 0.015 and TPR = 0.21. The value of ld was increased to 34 when the soft
threshold (2.6) was used in order to obtain the same FPR∗, and the TPR in this case
was equal to 0.25. For elongated objects the corresponding values were FPR∗ = 0.017
and TPR = 0.25 for the hard thresholding, and TPR = 0.27 for the soft thresholding.

Another experiment was conducted in order to investigate if the low performance
of the WMP for SNRs around 2–3 was dependent on the type of noise (Poisson
versus Gaussian). The variance-stabilizing Anscombe transform [7] was applied, which
transforms the image intensities according to I(i, j) → 2

√

I(i, j) + 3/8, and creates
approximately Gaussian data of unit variance, provided that the mean value of the
Poissonian data is more than 10 [7]. The experiments with the variance-stabilized
(Gaussian) images showed no significant difference in TPR and FPR for all types of
image data compared to the original (Poissonian) synthetic images.

2.4.1.3 Top-Hat Filter

The performance of the top-hat filter (further abbreviated as TH) was evaluated
using the same images as for the WMP detector. The brim radius, Rbrim, which
controls the local background estimation around the spot position, was fixed to 10
(see Section 2.3.2.2 for the parameters description). Varying this parameter in the
range 8-12 did not influence the final results significantly, indicating that the local
background estimation is quite robust. The TPR and FPR∗ of the method for different
Rtop values, depending on Hth, are shown in Fig. 2.6. Again, holes within clusters
(objects) in the binarized classification map CB were filled using the closing operation
with a 5× 5 mask. All found clusters were considered as objects, regardless of cluster
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Figure 2.5. FROC curves for the WMP detector in the case of the round objects,
depending on the wavelet coefficient threshold kd, for Type A (a), Type B (b), and
Type C (c) image data and different numbers of scales K, and the FROC curves for
Type C data for different SNRs (d). The same type of FROC curves in the case of
the round (e) and elongated (f) objects for different types of data, with SNR = 2
and K = 3.

size. The optimal values of Hth for all image types with SNR = 2 are shown in
Table 2.3. The value of Rtop = 3 was chosen, which maximizes the TPR when
FPR∗ = 0.01 for Type C data with both round and elongated objects.

2.4.1.4 Spot-Enhancing Filter

The performance of the spot-enhancing filter (further abbreviated as SEF) using the
synthetic images was studied depending on the values of the signal threshold ld (see
Section 2.3.2.3). The filter acts as a smoothing and local background subtraction
technique at the same time (Steps 2 and 3). The only parameter is the scale of
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Figure 2.6. FROC curves for the TH detector in the case of the round objects,
depending on the values of Hth, for several values of Rtop, for Type A (a), Type B
(b), and Type C (c) image data, and the FROC curves for Type C data for several
SNRs (d). The same type of FROC curves in the case of the round (e) and elongated
(f) objects depending on the values of Hth for different types of data, with SNR = 2,
Rbrim = 10, and Rtop = 3.

Table 2.3. Optimal parameters and performance of the TH detector at SNR = 2
with radii Rbrim = 10 and Rtop = 3.

Image Round Objects Elongated Objects
Type H∗

th TPR∗ ST SF H∗
th TPR∗ ST SF

A 2.74 .99 .00 .05 2.95 .99 .00 .20
B 5.85 .88 .11 .03 5.75 .96 .04 .02
C 5.28 .48 .35 .01 5.62 .56 .38 .01

the convolution kernel, σL, which was tuned in order to get the highest TPR at
FPR∗ = 0.01 in the case of Type C data. In the case of round objects, for σL values



38 2 Quantitative Comparison of Spot Detection Methods

-2.5 -2.0 -1.5 -1.0 -0.5

Log
10

(FPR*)

0.75

0.80

0.85

0.90

0.95

1.00

T
P
R Type A

Type B
Type C

FPR*=10
�2

TPR=0.8

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

Log
10

(FPR*)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
P
R Type A

Type B
Type C

FPR*=10
�2

TPR=0.8

(a) (b)

Figure 2.7. FROC curves for the SEF detector in the case of round (a) and
elongated (b) objects, depending on the values of the threshold Hth and the type
of image data, at SNR = 2 and optimal scales σL = 2.5 (for round objects) and
σL = 3.1 (for elongated objects).

Table 2.4. Optimal parameters and performance for the SEF detector at SNR = 2
and optimal scales σL = 2.5 (for round objects) and σL = 3.1 (for elongated objects).

Image Round Objects Elongated Objects
Type l∗d TPR∗ ST SF l∗d TPR∗ ST SF

A 0.85 .99 .01 .15 0.55 .99 .00 .16
B 1.84 .91 .35 .08 1.21 .99 .07 .06
C 1.22 .95 .29 .09 0.99 .95 .34 .07

{1.5, 2, 2.5, 3, 3.5}, the corresponding TPR values were {0.52, 0.9, 0.95, 0.9, 0.65}, and
thus σL = 2.5 was used in the experiments. In the case of elongated objects, for σL in
{2.5, 3, 3.5, 4}, the corresponding TPR values were {0.75, 0.86, 0.92, 0.74}, and σL =
3.1 was used. All clusters in the binary classification map after signal thresholding
were counted as objects, and the values l∗d and corresponding TPR∗, ST , and SF ,
for which FPR∗ = 0.01, are shown in Fig. 2.7 and Table 2.4. Again, the value l∗d
represents the optimal threshold, for which FPR∗ = 0.01, with corresponding TPR
denoted as TPR∗.

2.4.1.5 Grayscale Opening Top-Hat Filter

This detection method from grayscale morphology (further abbreviated as MTH) is
a robust local background subtraction technique. Its performance was not influenced
significantly by changes of the mask size, rA, in the range (3, 5) (see the parameter
description in Section 2.3.2.4). The input images were first smoothed with the Gaus-
sian kernel at σ = 2. The radius of the mask was fixed to rA = 5, which means that
all image structures of size smaller than the size of the disk A would be translated to
the detection map C. Two thresholds, one on the intensity amplitude and one on the
object size, could be applied for the object extraction from C. The latter threshold
is crucial if the clutter consists of possibly elongated narrow structures, which would
be considered as objects by this detector (see Section 2.3.2.4). We studied the depen-
dence of TPR and FPR∗ only on the intensity threshold ld, as in the synthetic images
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Figure 2.8. FROC curves for the MTH detector in the case of round (a) and
elongated (b) objects, depending on the values of intensity threshold ld for different
types of image data, at SNR = 2, and with mask radius rA = 5 and Gaussian
prefiltering at σ = 100 nm.

Table 2.5. Optimal parameters and performance for the MTH detector at SNR = 2
and with mask radius rA = 5 and Gaussian prefiltering at σ = 100 nm.

Image Round Objects Elongated Objects
Type l∗d TPR∗ ST SF l∗d TPR∗ ST SF

A 2.1 .99 .00 .04 2.1 .99 .00 .04
B 3.5 .87 .18 .06 4.1 .98 .05 .02
C 2.2 .88 .31 .03 3.2 .91 .15 .02

there are no clutter structures smaller than the object size. In this case, either inten-
sity thresholding can be used without size thresholding, or a low intensity threshold
can be used with further thresholding on the size. The values l∗d, and corresponding
TPR∗, ST , and SF , for which FPR∗ = 0.01, are shown in Fig. 2.8 and Table 2.5.

2.4.1.6 H-Dome Based Detection

The method based on the h-dome transformation (further referred as HD) was eval-
uated depending on the dome height h. The parameters of the method (see Section
2.3.2.5) were fixed to σL = 2.5, σM = 6, s = 6, and N = 5000, which maximize the
TPR for the Type C image data at FPR∗ = 0.01. The results of the experiments
are shown in Fig. 2.9. As described, the method estimates the object position and
the variance of that estimation using a sampling procedure, bypassing the explicit
creation of the map C [146]. The values h∗ and corresponding TPR∗, ST , and SF , for
which FPR∗ = 0.01, are shown in Fig. 2.9 and Table 2.6.

2.4.1.7 Image Features Based Detection

This scheme (further abbreviated as IFD) creates the classification map C during
Step 2 by combining the image intensities with local curvature information (see Sec-
tion 2.3.2.6). Two types of the map C were considered in the experiments (with the
resulting methods abbreviated as IFD1 and IFD2 respectively). In the first case, C
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Figure 2.9. FROC curves for the HD detector in the case of round (a) and elongated
(b) objects, depending on the values of the dome height h for different types of image
data, at SNR = 2, and with parameters σL = 2.5, σM = 6, s = 6, and N = 5000.

Table 2.6. Optimal parameters and performance for the HD detector at SNR = 2
for parameters σL = 2.5, σM = 6, s = 6, and N = 5000.

Image Round Objects Elongated Objects
Type h∗ TPR∗ ST SF h∗ TPR∗ ST SF

A 1.6 .99 .11 .05 1.4 .99 .01 .09
B 1.6 .97 .22 .05 1.4 .99 .01 .09
C 1.6 .90 .21 .05 1.2 .97 .16 .05

is given by the determinant of the Hessian matrix, detH, calculated at each pixel,
with smoothing scale σ [159]. The second type of classification map C is obtained
by pixel-wise multiplication of the values detH(i, j) with the intensity values J(i, j)
(2.2). In the experiments, we used σ = 2, and the results are shown in Fig. 2.10 and
Table 2.7.

2.4.1.8 AdaBoost

In order to test the performance of the ML approaches, starting with AdaBoost (ab-
breviated as AB) for the detection of round objects, we constructed a pool of 962
Haar-like features (see Section 2.3.3.1) using a 10×10 pixel subwindow, which was
previously reported as optimal for similar applications [73]. Experiments with other
subwindow sizes in the range of 8-12 pixels showed no significant difference in per-
formance. For the detection of elongated objects, the subwindow size was fixed to
13×13 pixels, which consequently gives 2366 features. Even though the characteristic
size of the elongated objects is doubled (compared to the round objects), the use
of larger subwindow sizes, for example 21×21 pixels, degraded the AdaBoost perfor-
mance. With the high spot density, the larger subwindows included the neighboring
objects (equally frequently in the positive and negative training sets) and caused the
problem with defining a clear decision boundary for these ML approach.

For the training stage, separate sets of synthetic images were created, and 4096
positive and 4096 negative samples (10×10 pixels) were extracted from each image
type (A, B and C) containing round objects. The same training procedure was re-
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Figure 2.10. FROC curves for the IFD1 detector in the case of the round (a) and
elongated (b) objects, depending on the values of the threshold ld and the type of
image data, at SNR = 2, and for smoothing scale σ = 2. The same curves for IFD2

in the case of round (c) and elongated (d) objects.

Table 2.7. Optimal parameters and performance for the IFD detectors at SNR = 2
and for smoothing scale σ = 2.

Image Round Objects Elongated Objects
Type l∗d TPR∗ ST SF l∗d TPR∗ ST SF

IFD1

A .12 .98 0.67 .68 .21 .53 5.17 .42
B .58 .67 1.23 .12 .71 .31 1.02 .06
C .18 .89 2.51 .16 .28 .31 3.21 .26

IFD2

A 1.33 .99 .03 .03 3.06 .59 .32 .03
B 33.34 .46 .01 .00 43.36 .23 .01 .00
C 1.95 .71 .36 .03 6.33 .19 .08 .01

peated for elongated objects. Four types of training were performed: using the sam-
ples from each image type separately, and using the combined training dataset, where
4095 samples were selected (in total) from type A, B and C images in equal propor-
tions. The training was based on SNR = 2 (the worst case considered in this chapter).
Training using higher-SNR images resulted in worse performance on lower-SNR im-
ages, as the number of features selected by AdaBoost became too small. Each trained
classifier was applied separately to the synthetically created test images of all three
types, with SNR in the range 2–4, and the classification results (sensitivity (TPR)
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Table 2.8. Sensitivity and specificity of AdaBoost classification.

Image Type A Image Type B Image Type C
SNR TPR Spec. TPR Spec. TPR Spec.

Trained using type A data (SNR = 2)
2 0.994 0.995 0.999 0.930 0.965 0.987
3 1.0 0.996 1.0 0.922 1.0 0.989
4 1.0 0.995 1.0 0.919 1.0 0.992

Trained using type B data (SNR = 2)
2 0.914 1.0 0.991 0.977 0.690 1.0
3 1.0 0.999 1.0 0.977 0.998 0.999
4 1.0 0.999 1.0 0.977 1.0 0.999

Trained using type C data (SNR = 2)
2 0.996 0.992 0.999 0.902 0.999 0.979
3 1.0 0.990 1.0 0.910 1.0 0.982
4 1.0 0.991 1.0 0.901 1.0 0.982

Trained using type A, B, C data combined (SNR = 2)
2 0.988 0.998 0.998 0.942 0.962 0.994
3 1.0 0.997 1.0 0.939 1.0 0.995
4 1.0 0.998 1.0 0.940 1.0 0.993

Figure 2.11. Example of the top-five features that were selected by AdaBoost in
the case of the Type A training data.

and specificity) for 4096 positive and 4096 negative patches, extracted from these test
images, are given in Table 2.8. In the experiments, the number of AdaBoost runs,
NAB , which corresponds to the number of features selected and used by the classi-
fier, was fixed to 5. The top-five features selected during the training are shown in
Fig. 2.11.

The behavior of the sensitivity and specificity was also investigated depending on
the number of Haar-like features, NAB , that are used for the classification. For this
analysis, combined training (using the data of type A, B, and C) was performed, and
the classifier was separately applied to the test data of each type. The results for
different values of NAB are shown in Table 2.9, where the last three rows also show
the performance of the classifier trained using a reduced training set of 1002 combined
samples (334 of each type).

In all these performance evaluation experiments, the classifier was applied to
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Table 2.9. Sensitivity and specificity of AdaBoost classification depending on the
number of runs.

Image Type A Image Type B Image Type C
SNR TPR Spec. TPR Spec. TPR Spec.

NAB = 5
2 0.988 0.998 0.998 0.942 0.962 0.994
3 1.0 0.997 1.0 0.939 1.0 0.995
4 1.0 0.998 1.0 0.940 1.0 0.993

NAB = 10
2 0.991 0.998 0.999 0.946 0.965 0.994
3 1.0 0.998 1.0 0.944 1.0 0.996
4 1.0 0.998 1.0 0.944 1.0 0.993

NAB = 20
2 0.991 0.999 0.999 0.953 0.965 0.994
3 1.0 0.998 1.0 0.957 1.0 0.996
4 1.0 0.998 1.0 0.954 1.0 0.996

NAB = 5 and 1002 training samples
2 0.991 0.999 0.999 0.953 0.965 0.994
3 1.0 0.998 1.0 0.957 1.0 0.996
4 1.0 0.998 1.0 0.954 1.0 0.996

image patches extracted from the positive and negative test images. In order to
evaluate the performance of actual detection using this machine learning approach,
we applied the classifier to each pixel in the images (based on a window of size 10×10-
pixels around the pixel). The resulting classification map is a new image of the same
size as the original, with each pixel being either “1” (if the corresponding image
pixel was classified as belonging to an object) or “0” (if the pixel was classified as
background). Before labeling the connected components and extracting the number of
detected objects and their positions, the map was median-filtered with a round mask
of radius 2 pixels in order to suppress too small clusters, and then a closing operation
was applied with the 3×3 structuring element to fill small holes. The FROC curves
for this detection procedure depending on the size threshold vd of the clusters in the
binary classification map CB in the case of round and elongated objects are shown
in Fig. 2.12. The behavior of TPR and FPR∗ depending on the number of features,
NAB , used in the detection is shown in Table 2.10. The parameters of the detection
were optimized in order to get FPR∗ = 0.01 when NAB = 50. After that, the number
of features NAB was reduced (see Table 2.10) and the behavior of the performance
measures studied. The optimal parameter values for the size threshold vd are shown
in Table 2.11.
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Figure 2.12. FROC curves for the AdaBoost detector in the case of the round
(a) and elongated (b) objects, depending on the value of the size threshold vd, at
SNR = 2, and with NAB = 50.

Table 2.10. Detection performance of AdaBoost depending on the number of
selected features, NAB , with training based on the combined image data (type A,
B, and C) at SNR = 2.

Image Type A Image Type B Image Type C
NAB TPR FPR∗ TPR FPR∗ TPR FPR∗

5 0.995 0.013 0.912 0.037 0.806 0.019
10 0.996 0.014 0.929 0.041 0.818 0.022
20 0.994 0.013 0.921 0.022 0.789 0.019
50 0.994 0.011 0.926 0.016 0.810 0.018

Table 2.11. Optimal size thresholding parameters and corresponding performance
for AdaBoost at SNR = 2.

Image Round Objects Elongated Objects
Type v∗d TPR∗ ST SF v∗d TPR∗ ST SF

A 3 .99 10−3 10−3 2 .99 10−5 .10
B 31 .94 .01 10−3 18 .99 10−5 10−3

C 30 .94 .01 10−3 12 .99 10−5 10−3

2.4.1.9 Fisher Discriminant Analysis

The classifier in this case (abbreviated as FDA) was trained using the same training
data as in the case of AdaBoost. Using the labeled 10 × 10 image patches (for the
round objects) and 13 × 13 patches (for the elongated objects), the kernels w for
both types of objects were obtained (see Fig. 2.17(d,e)). Then, the sliding subwindow
was used in order to classify every pixel in the image I. The method produces the
binary classification map CB directly, so the performance of the detector was studied
depending on the threshold vd (which defines the size of the clusters of connected
pixels in CB), and not the signal threshold ld. The results are shown in Fig. 2.13
and the optimal parameter values are presented in Table 2.12. The size threshold,
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Figure 2.13. FROC curves for the FDA detector in the case of the round (a) and
elongated (b) objects, depending on the values of the size threshold vd and the type
of image data, at SNR = 2.

Table 2.12. Optimal size thresholding parameters and corresponding performance
for the FDA detector at SNR = 2.

Image Round Objects Elongated Objects
Type v∗d TPR∗ ST SF v∗d TPR∗ ST SF

A 4.6 .99 10−5 .01 3.0 .99 10−5 10−2

B 8.8 .99 10−3 .01 5.6 .99 10−5 10−2

C 9.8 .96 10−2 .01 12.4 .99 10−5 10−3

which in principle is an integer number (the minimum number of pixels a cluster in
CB should have to be considered an object), is real-valued in Table 2.12, due to the
interpolation in order to obtain the value v∗d for which FPR∗ = 0.01.

2.4.1.10 Comparison of All Detectors

The performance of all the described detectors was compared at the level of FPR∗ =
0.01 for the different image data at SNR = 2. The results are shown in Fig. 2.14.
From the sensitivity analyses (see Tables 2.2-2.7, 2.11, 2.12), which was based on the
comparison of ∆TPR and ∆FPR around the optimal signal thresholds for different
detectors and data types revealed that the FDA and AB are superior to all other
detectors and show the highest TPR* and the lowest sensitivity for all image data
(Type A, B and C, SNR = 2). The WMP demonstrated the worst performance
and additionally showed high sensitivity to parameter changes, together with the TH
detector, which demonstrated high performance only for Type A and B data. The
IFDs are quite sensitive to parameter changes and do not have sufficiently high TPR
in the case of the elongated objects. The HD, SEF and MTH demonstrate high TPR*
and low parameter sensitivity, but none of these three detectors is better than the
other two for all types of data. Finally we observed that the difference in performance
between the methods decreases when the SNR of the image data increases, and we
found that for SNR > 5 all methods perform equally well (TPR = 1).
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Figure 2.14. Maximum detection probabilities (TPR∗) at the level FPR∗ = 0.01
for all the detectors applied to all three types of synthetic image data at SNR = 2
in the case of the round (top) and elongated (bottom) objects.

2.4.2 Evaluation on Real Image Data

2.4.2.1 Image Data

The described detection methods were also tested on real time-lapse fluorescence
microscopy image data from several biological studies. The main goal of these stud-
ies was to estimate important kinematic parameters of subcellular particles in eu-
karyotic cells. To understand the molecular mechanisms underlying particle motility
and distribution, it is essential to characterize in detail different dynamic proper-
ties, such as velocities, run lengths, and frequencies of pausing and switching of cy-
toskeletal tracks. This requires accurate tracking of individual particles, for which
a wide variety of automatic tracking algorithms can be found in the recent litera-
ture [10, 17, 38, 52, 72, 74, 75, 128, 132, 141, 142]. In turn, these algorithms generally
depend heavily on the performance of the spot detection stage, which forms an inte-
gral part of any tracking algorithm (see Section 2.1).

Two types of representative image data sets were selected for these experiments.
The first showed moving microtubule (MT) plus-ends, which have a round or elon-
gated appearance. MTs are hollow tubes (diameter of 25 nm) assembled from α/β-
tubulin heterodimers, which frequently switch between growth and shrinkage [80,155].
The MT network is highly regulated and is essential to many cellular processes. In
the experiments, growing ends of MTs were tagged with so-called plus-end-tracking
proteins (+TIP), resulting in typical fluorescent “comet-like” dashes in the image se-
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quences. In our study, COS-1 cells were cultured and transfected with GFP-tagged
proteins [155]. A Zeiss LSM-510 confocal laser scanning microscope was used to ac-
quire images of GFP+TIP movements at a rate of 1 frame per 1 or 2 seconds. The
image sequences consisted of 30–50 frames of 512×512 pixels of size 75×75 nm2 (see
Fig. 2.15(a,b)).

The second type of image data showed a variety of GFP-labeled vesicles (Rab6
and peroxisomes), which have a round shape in the images. In this case, HeLa cells
and PEX3-GFP fusion were used [58]. The HeLa cell line is the oldest cell line and
is widely used for many different studies. Many variants of the HeLa cell line exist,
including HeLa-R, with a so-called “round” phenotype, and HeLa-L, with a “long”
phenotype. HeLa-L cells were used to study the dynamic properties of vesicles, and
HeLa-R cells to study microtubule dynamics, microtubule and cell cortex crosstalk,
and exocytosis [58]. Images were acquired on a Zeiss Axiovert 200M inverted mi-
croscope at a rate of 0.83 frames per second. The image sequences consisted of 100
frames of 1344 × 1024 pixels of size 64 × 64 nm2 (see Fig. 2.15(c)).

2.4.2.2 Experiments and Results

For the experiments on real image data, the parameters of each detection method
(except the thresholds ld and vd) were fixed to the same values as in the case of the
experiments on synthetic data. Since the ground truth was not available for the real
data, the results of the detection were analyzed by expert visual inspection and in
comparison with manual analysis using MTrackJ [94].

The FROC plots for all the detection methods applied to two illustrative image
data sets showing MTs (each image containing ≈ 80–100 spots at SNR ≈ 2–4) and
one data set showing vesicles (containing ≈ 250 spots at SNR ≈ 3–8) are shown in
Fig. 2.15. For the latter data set, all detection methods performed reasonably well,
including the WMP detector, which performed notably worse on the MT data. In all
cases, the two ML detectors (FDA and AB) and the HD detector showed the best
overall performance. For visual comparison, the kernels obtained by FDA for the
three mentioned real image data sets, as well as for the two types of synthetic data
sets are shown in Fig. 2.17, where, for example, Fig 2.17(c) depicts the fact that the
vesicle appearance in our images (see Fig. 2.15(c)) is more diverse compared to the
microtubule data (Fig. 2.15(a, b)).

As an example, the results of all methods applied to an MT data set with SNR ≈
2 are shown in Fig. 2.16. Manual annotation was extremely laborious and tedious in
this case: visual comparison of several neighboring time-frames in the image sequence
was necessary in order to establish object presence. Based on visual inspection of
the results, it was found that the HD detector yielded the largest number of TPs
and the smallest number of FPs. Here, in order to test the robustness of the ML
approaches, the training was done using positive and negative samples obtained from
another dataset (see Fig. 2.1(b)) with SNR ≈ 2–3. The results of this experiment
imply that FDA is more sensitive to the training data: if the training is done using
image data with different imaging conditions (SNR), the performance of the classifier
can degrade. The AdaBoost algorithm, on the other hand, is less sensitive.
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(a) (b) (c) (d) (e)

Figure 2.17. The FDA kernels for the MT data (a and b), vesicles (c), and the
round and elongated objects from the synthetic data (d and e).

2.5 Discussion and Conclusions

In this chapter we have evaluated the performance of six unsupervised and two su-
pervised detection methods that are frequently used in practice for the detection of
small spots in fluorescence microscopy images. It was shown that all of the described
methods follow a “three-step” signal processing procedure, but implement each of
these steps in a specific way. In order to build an accurate and robust detector for a
particular application, a careful selection of the algorithms for each of the steps is nec-
essary. The results from experiments on synthetic images as well as real image data
from two biological studies indicated that no detector outperforms all others in all
considered situations. Overall, the supervised (machine learning) methods performed
better on the synthetic images as well as on the real image data, but the differences
in the performance were not large compared to some of the unsupervised methods.

In order to study the influence of small changes in the parameter settings of the
detection methods, a sensitivity analysis was carried out by computing the resulting
rate of change in TPR (the true-positive ratio) and FPR (the false-positive ratio)
around the empirically determined optimal signal threshold, for two types of objects
(round and elongated). From the experiments on the synthetic images at very low
SNR (≈ 2), we found that the AB (AdaBoost) and the FDA (Fisher discriminant
analysis) detectors are superior to all other detectors, in that they show the highest
TPR (at very low FPR) and the lowest sensitivity to parameter changes, for all
types of image data considered: uniform background (Type A), background gradient
(Type B), and cluttered background structures (Type C). Of all the unsupervised
detectors, the WMP (wavelet multiscale product) detector showed the worst overall
performance and, additionally, high sensitivity to parameter changes. Similarly, the
TH (top-hat based) detector showed high performance only for Type A and Type B
data. The HD (h-dome), MTH (morphological top-hat), and SEF (spot-enhancing
filter) based detectors showed high TPR and low parameter sensitivity, but none of
them was better than the other two for all data types. Both variants of IFD (the
image-feature based detector) were quite sensitive to parameter changes and did not
show high TPR in the detection of elongated objects. Finally, we also observed from
these experiments that for SNR > 3, the difference in performance of all the detectors
rapidly decreases.

From the experiments on real fluorescence microscopy image data, it was con-
firmed that the actual performance of the detection methods depends on the appli-
cation. For the microtubule data, which contained round or elongated objects of
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almost identical sizes, we arrived at the same conclusions as in the case of the syn-
thetic image data. For the vesicle data, however, the ranking of the detectors was
found to be slightly different. These images have a higher SNR (≈ 3–8) but contain
spots of varying sizes. In this case, the detection methods that have parameters that
explicitly relate to spot size, such as the TH and MTH detectors, showed quite poor
performance. Once their parameters are set, these detectors expect spots to be of
similar size. Similarly, the image-feature based IFD detector works well only when
all the spots have very similar appearance in terms of the features considered. On
the other hand, detectors such as SEF and HD do not model the spots exactly, and
because of that allow some more variation in the appearance of spots. Moreover, the
WMP detector, which also does not assume any specific object shape, demonstrated
much better performance for such datasets.

Based on our extensive experiments, we conclude that when a detector with overall
good performance is needed, the supervised AB or FDA detectors or the unsupervised
HD detector are to be preferred. The main disadvantage of the supervised methods is
that they require a training stage, which involves the extraction of positive and neg-
ative samples beforehand. As was shown, the training should not be done using only
clearly visible spots in image regions with high local SNRs. On the contrary, in order
to achieve good classification performance, it must also include a lot of hardly visible
objects. Such manual annotation is extremely tedious, time consuming, and observer
dependent. Spots may be more or less identical within one data set, but may differ
in appearance from one data set to another, due to the different experimental and
imaging conditions. Because of that, one would have to repeat the training (or correct
it) when new data sets arrive. The preparation of training samples requires manual
annotation of thousands of objects in order to achieve sufficient discriminating power,
which itself is a manual detection that biologists would be happy to use, without
considering further automated analysis. Taking this into account, the unsupervised
HD detector is much easier to use in practice. Finally, when the SNR is sufficiently
high (> 5 as a rule of thumb), the other unsupervised detectors perform just as well,
and require only minimal adjustment of their parameters to the specific application.


